1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
//! Various probability distributions for sampling light sources.
// std
use std::rc::Rc;
use std::sync::Arc;
// others
use atom::AtomSetOnce;
use atomic::{Atomic, Ordering};
use strum::IntoEnumIterator;
// pbrt
use crate::core::geometry::{Bounds3f, Normal3f, Point2f, Point3f, Point3i, Vector3f, XYZEnum};
use crate::core::integrator::compute_light_power_distribution;
use crate::core::interaction::InteractionCommon;
use crate::core::light::VisibilityTester;
use crate::core::lowdiscrepancy::radical_inverse;
use crate::core::pbrt::clamp_t;
use crate::core::pbrt::{Float, Spectrum};
use crate::core::sampling::Distribution1D;
use crate::core::scene::Scene;
// see lightdistrib.h
/// LightDistribution defines a general interface for classes that
/// provide probability distributions for sampling light sources at a
/// given point in space.
pub enum LightDistribution {
Uniform(UniformLightDistribution),
Power(PowerLightDistribution),
Spatial(SpatialLightDistribution),
}
impl LightDistribution {
pub fn lookup(&self, p: &Point3f) -> Arc<Distribution1D> {
match self {
LightDistribution::Uniform(distribution) => distribution.lookup(p),
LightDistribution::Power(distribution) => distribution.lookup(p),
LightDistribution::Spatial(distribution) => distribution.lookup(p),
}
}
}
#[derive(Debug)]
struct HashEntry {
packed_pos: Atomic<u64>,
distribution: AtomSetOnce<Arc<Distribution1D>>,
}
/// The simplest possible implementation of LightDistribution: this
/// returns a uniform distribution over all light sources, ignoring
/// the provided point. This approach works well for very simple
/// scenes, but is quite ineffective for scenes with more than a
/// handful of light sources. (This was the sampling method originally
/// used for the PathIntegrator and the VolPathIntegrator in the
/// printed book, though without the UniformLightDistribution class.)
pub struct UniformLightDistribution {
pub distrib: Arc<Distribution1D>,
}
impl UniformLightDistribution {
pub fn new(scene: &Scene) -> Self {
let prob: Vec<Float> = vec![1.0 as Float; scene.lights.len()];
UniformLightDistribution {
distrib: Arc::new(Distribution1D::new(prob)),
}
}
// LightDistribution
/// Given a point |p| in space, this method returns a (hopefully
/// effective) sampling distribution for light sources at that
/// point.
pub fn lookup(&self, _p: &Point3f) -> Arc<Distribution1D> {
self.distrib.clone()
}
}
/// PowerLightDistribution returns a distribution with sampling
/// probability proportional to the total emitted power for each
/// light. (It also ignores the provided point |p|.) This approach
/// works well for scenes where there the most powerful lights are
/// also the most important contributors to lighting in the scene, but
/// doesn't do well if there are many lights and if different lights
/// are relatively important in some areas of the scene and
/// unimportant in others. (This was the default sampling method used
/// for the BDPT integrator and MLT integrator in the printed book,
/// though also without the PowerLightDistribution class.)
pub struct PowerLightDistribution {
pub distrib: Option<Arc<Distribution1D>>,
}
impl PowerLightDistribution {
pub fn new(scene: &Scene) -> Self {
PowerLightDistribution {
distrib: compute_light_power_distribution(scene),
}
}
// LightDistribution
/// Given a point |p| in space, this method returns a (hopefully
/// effective) sampling distribution for light sources at that
/// point.
pub fn lookup(&self, _p: &Point3f) -> Arc<Distribution1D> {
if let Some(distrib) = &self.distrib {
distrib.clone()
} else {
// WARNING: this should only happen if scene.lights.is_empty()
let prob: Vec<Float> = Vec::new();
Arc::new(Distribution1D::new(prob))
}
}
}
/// A spatially-varying light distribution that adjusts the
/// probability of sampling a light source based on an estimate of its
/// contribution to a region of space. A fixed voxel grid is imposed
/// over the scene bounds and a sampling distribution is computed as
/// needed for each voxel.
pub struct SpatialLightDistribution {
pub scene: Scene,
pub n_voxels: [i32; 3],
hash_table: Box<[HashEntry]>,
pub hash_table_size: usize,
}
impl SpatialLightDistribution {
pub fn new(scene: &Scene, max_voxels: u32) -> Self {
// compute the number of voxels so that the widest scene
// bounding box dimension has maxVoxels voxels and the other
// dimensions have a number of voxels so that voxels are
// roughly cube shaped.
let b: Bounds3f = *scene.world_bound();
let diag: Vector3f = b.diagonal();
let bmax_i: XYZEnum = match b.maximum_extent() {
0 => XYZEnum::X,
1 => XYZEnum::Y,
_ => XYZEnum::Z,
};
let bmax: Float = diag[bmax_i];
let mut n_voxels: [i32; 3] = [0_i32; 3];
for i in XYZEnum::iter() {
n_voxels[i as usize] = std::cmp::max(
1 as i32,
(diag[i] / bmax * max_voxels as Float).round() as i32,
);
// in the Lookup() method, we require that 20 or fewer
// bits be sufficient to represent each coordinate
// value. It's fairly hard to imagine that this would ever
// be a problem.
assert!(n_voxels[i as usize] < (1 << 20));
}
let hash_table_size: usize = (4 as i32 * n_voxels[0] * n_voxels[1] * n_voxels[2]) as usize;
let mut hash_table: Vec<HashEntry> = Vec::with_capacity(hash_table_size);
// let null: *mut Distribution1D = std::ptr::null_mut();
for _i in 0..hash_table_size {
let hash_entry: HashEntry = HashEntry {
packed_pos: Atomic::new(INVALID_PACKED_POS),
distribution: AtomSetOnce::empty(),
};
hash_table.push(hash_entry);
}
SpatialLightDistribution {
scene: scene.clone(),
n_voxels,
hash_table: hash_table.into_boxed_slice(),
hash_table_size,
}
}
/// Compute the sampling distribution for the voxel with integer
/// coordiantes given by "pi".
pub fn compute_distribution(&self, pi: &Point3i) -> Distribution1D {
// Compute the world-space bounding box of the voxel
// corresponding to |pi|.
let p0: Point3f = Point3f {
x: pi[XYZEnum::X] as Float / self.n_voxels[0] as Float,
y: pi[XYZEnum::Y] as Float / self.n_voxels[1] as Float,
z: pi[XYZEnum::Z] as Float / self.n_voxels[2] as Float,
};
let p1: Point3f = Point3f {
x: (pi[XYZEnum::X] + 1) as Float / self.n_voxels[0] as Float,
y: (pi[XYZEnum::Y] + 1) as Float / self.n_voxels[1] as Float,
z: (pi[XYZEnum::Z] + 1) as Float / self.n_voxels[2] as Float,
};
let voxel_bounds: Bounds3f = Bounds3f {
p_min: self.scene.world_bound().lerp(&p0),
p_max: self.scene.world_bound().lerp(&p1),
};
// Compute the sampling distribution. Sample a number of
// points inside voxelBounds using a 3D Halton sequence; at
// each one, sample each light source and compute a weight
// based on Li/pdf for the light's sample (ignoring visibility
// between the point in the voxel and the point on the light
// source) as an approximation to how much the light is likely
// to contribute to illumination in the voxel.
let n_samples: usize = 128;
let mut light_contrib: Vec<Float> = vec![0.0 as Float; self.scene.lights.len()];
for i in 0..n_samples {
let po: Point3f = voxel_bounds.lerp(&Point3f {
x: radical_inverse(0, i as u64),
y: radical_inverse(1, i as u64),
z: radical_inverse(2, i as u64),
});
let time: Float = 0.0;
let intr: Rc<InteractionCommon> = Rc::new(InteractionCommon {
p: po,
time,
p_error: Vector3f::default(),
wo: Vector3f {
x: 1.0,
y: 0.0,
z: 0.0,
},
n: Normal3f::default(),
medium_interface: None,
});
// Use the next two Halton dimensions to sample a point on the
// light source.
let u: Point2f = Point2f {
x: radical_inverse(3, i as u64),
y: radical_inverse(4, i as u64),
};
for (j, item) in light_contrib
.iter_mut()
.enumerate()
.take(self.scene.lights.len())
{
let mut light_intr: InteractionCommon = InteractionCommon::default();
let mut pdf: Float = 0.0 as Float;
let mut wi: Vector3f = Vector3f::default();
let mut vis: VisibilityTester = VisibilityTester::default();
let li: Spectrum = self.scene.lights[j].sample_li(
&intr,
&mut light_intr,
u,
&mut wi,
&mut pdf,
&mut vis,
);
if pdf > 0.0 as Float {
// TODO: look at tracing shadow rays / computing
// beam transmittance. Probably shouldn't give
// those full weight but instead e.g. have an
// occluded shadow ray scale down the contribution
// by 10 or something.
*item += li.y() / pdf;
}
}
}
// We don't want to leave any lights with a zero probability;
// it's possible that a light contributes to points in the
// voxel even though we didn't find such a point when sampling
// above. Therefore, compute a minimum (small) weight and
// ensure that all lights are given at least the corresponding
// probability.
let sum_contrib: Float = light_contrib.iter().sum();
let avg_contrib: Float = sum_contrib / (n_samples * light_contrib.len()) as Float;
let min_contrib = if avg_contrib > 0.0 as Float {
0.001 * avg_contrib
} else {
1.0 as Float
};
for item in &mut light_contrib {
// println!("Voxel pi = {:?}, light {:?} contrib = {:?}",
// pi, i, light_contrib[i]);
*item = item.max(min_contrib);
}
// println!("Initialized light distribution in voxel pi= {:?}, avg_contrib = {:?}",
// pi, avg_contrib);
// Compute a sampling distribution from the accumulated contributions.
Distribution1D::new(light_contrib)
}
// LightDistribution
/// Given a point |p| in space, this method returns a (hopefully
/// effective) sampling distribution for light sources at that
/// point.
pub fn lookup(&self, p: &Point3f) -> Arc<Distribution1D> {
// TODO: ProfilePhase _(Prof::LightDistribLookup);
// TODO: ++nLookups;
// first, compute integer voxel coordinates for the given
// point |p| with respect to the overall voxel grid.
let offset: Vector3f = self.scene.world_bound().offset(&p); // offset in [0,1].
let mut pi: Point3i = Point3i::default();
for i in XYZEnum::iter() {
// the clamp should almost never be necessary, but is
// there to be robust to computed intersection points
// being slightly outside the scene bounds due to
// floating-point roundoff error.
pi[i] = clamp_t(
(offset[i] * self.n_voxels[i as usize] as Float) as i32,
0_i32,
self.n_voxels[i as usize] - 1_i32,
);
}
// pack the 3D integer voxel coordinates into a single 64-bit value.
let packed_pos: u64 = ((pi[XYZEnum::X] as u64) << 40)
| ((pi[XYZEnum::Y] as u64) << 20)
| (pi[XYZEnum::Z] as u64);
assert_ne!(packed_pos, INVALID_PACKED_POS);
// Compute a hash value from the packed voxel coordinates. We
// could just take packed_Pos mod the hash table size, but
// since packed_Pos isn't necessarily well distributed on its
// own, it's worthwhile to do a little work to make sure that
// its bits values are individually fairly random. For details
// of and motivation for the following, see:
// http://zimbry.blogspot.ch/2011/09/better-bit-mixing-improving-on.html
let mut hash: u64 = packed_pos;
hash ^= hash >> 31;
hash = hash.wrapping_mul(0x7fb5_d329_728e_a185);
hash ^= hash >> 27;
hash = hash.wrapping_mul(0x81da_def4_bc2d_d44d);
hash ^= hash >> 33;
hash %= self.hash_table_size as u64;
// Now, see if the hash table already has an entry for the
// voxel. We'll use quadratic probing when the hash table
// entry is already used for another value; step stores the
// square root of the probe step.
let mut step: u64 = 1;
// TODO: int nProbes = 0;
loop {
// TODO: ++nProbes;
let entry: &HashEntry = &self.hash_table[hash as usize];
// does the hash table entry at offset |hash| match the current point?
let entry_packed_pos: u64 = entry.packed_pos.load(Ordering::Acquire);
if entry_packed_pos == packed_pos {
// Yes! Most of the time, there should already by a light
// sampling distribution available.
let option: Option<Arc<Distribution1D>> = entry.distribution.dup(Ordering::Acquire);
if option.is_none() {
// Rarely, another thread will have already done a
// lookup at this point, found that there isn't a
// sampling distribution, and will already be
// computing the distribution for the point. In
// this case, we spin until the sampling
// distribution is ready. We assume that this is a
// rare case, so don't do anything more
// sophisticated than spinning.
loop {
let option2: &Option<Arc<Distribution1D>> =
&entry.distribution.dup(Ordering::Acquire);
if option2.is_some() {
if let Some(ref dist) = *option2 {
// We have a valid sampling distribution.
return dist.clone();
}
}
}
} else {
// We have a valid sampling distribution.
return option.as_ref().unwrap().clone();
}
} else if entry_packed_pos != INVALID_PACKED_POS {
// The hash table entry we're checking has already
// been allocated for another voxel. Advance to the
// next entry with quadratic probing.
hash += step * step;
if hash >= self.hash_table_size as u64 {
hash %= self.hash_table_size as u64;
}
step += 1_u64;
} else {
// We have found an invalid entry. (Though this may
// have changed since the load into entryPackedPos
// above.) Use an atomic compare/exchange to try to
// claim this entry for the current position.
let invalid: u64 = INVALID_PACKED_POS;
let success = entry
.packed_pos
.compare_exchange_weak(invalid, packed_pos, Ordering::SeqCst, Ordering::Relaxed)
.is_ok();
if success {
// Success; we've claimed this position for this
// voxel's distribution. Now compute the sampling
// distribution and add it to the hash table.
let dist: Distribution1D = self.compute_distribution(&pi);
let arc_dist: Arc<Distribution1D> = Arc::new(dist);
entry
.distribution
.set_if_none(arc_dist.clone(), Ordering::Release);
return arc_dist;
}
}
}
}
}
// see lightdistrib.cpp
const INVALID_PACKED_POS: u64 = 0xffff_ffff_ffff_ffff;
/// Decides based on the name and the number of scene lights which
/// light distribution to return.
pub fn create_light_sample_distribution(
name: String,
scene: &Scene,
) -> Option<Arc<LightDistribution>> {
if name == "uniform" || scene.lights.len() == 1 {
Some(Arc::new(LightDistribution::Uniform(
UniformLightDistribution::new(scene),
)))
} else if name == "power" {
Some(Arc::new(LightDistribution::Power(
PowerLightDistribution::new(scene),
)))
} else if name == "spatial" {
Some(Arc::new(LightDistribution::Spatial(
SpatialLightDistribution::new(scene, 64),
)))
} else {
println!(
"Light sample distribution type \"{:?}\" unknown. Using \"spatial\".",
name
);
Some(Arc::new(LightDistribution::Spatial(
SpatialLightDistribution::new(scene, 64),
)))
}
}