1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
use std::cell::Cell;
use std::sync::Arc;
use crate::core::geometry::vec3_cross_vec3;
use crate::core::geometry::{Normal3f, Vector2f, Vector3f};
use crate::core::interaction::SurfaceInteraction;
use crate::core::pbrt::{Float, Spectrum};
use crate::core::texture::Texture;
use crate::materials::disney::DisneyMaterial;
use crate::materials::fourier::FourierMaterial;
use crate::materials::glass::GlassMaterial;
use crate::materials::hair::HairMaterial;
use crate::materials::matte::MatteMaterial;
use crate::materials::metal::MetalMaterial;
use crate::materials::mirror::MirrorMaterial;
use crate::materials::mixmat::MixMaterial;
use crate::materials::plastic::PlasticMaterial;
use crate::materials::substrate::SubstrateMaterial;
use crate::materials::subsurface::SubsurfaceMaterial;
use crate::materials::translucent::TranslucentMaterial;
use crate::materials::uber::UberMaterial;
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum TransportMode {
Radiance,
Importance,
}
pub enum Material {
Disney(Box<DisneyMaterial>),
Fourier(Box<FourierMaterial>),
Glass(Box<GlassMaterial>),
Hair(Box<HairMaterial>),
Matte(Box<MatteMaterial>),
Metal(Box<MetalMaterial>),
Mirror(Box<MirrorMaterial>),
Mix(Box<MixMaterial>),
Plastic(Box<PlasticMaterial>),
Substrate(Box<SubstrateMaterial>),
Subsurface(Box<SubsurfaceMaterial>),
Translucent(Box<TranslucentMaterial>),
Uber(Box<UberMaterial>),
}
impl Material {
pub fn compute_scattering_functions(
&self,
si: &mut SurfaceInteraction,
mode: TransportMode,
allow_multiple_lobes: bool,
mat: Option<Arc<Material>>,
scale: Option<Spectrum>,
) {
match self {
Material::Disney(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
Material::Fourier(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
Material::Glass(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
Material::Hair(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
Material::Matte(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
Material::Metal(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
Material::Mirror(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
Material::Mix(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
Material::Plastic(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
Material::Substrate(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
Material::Subsurface(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
Material::Translucent(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
Material::Uber(material) => {
material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
}
}
}
pub fn bump(d: &Arc<dyn Texture<Float> + Send + Sync>, si: &mut SurfaceInteraction)
where
Self: Sized,
{
let mut si_eval: SurfaceInteraction = SurfaceInteraction::default();
si_eval.common.p = si.common.p;
si_eval.common.time = si.common.time;
si_eval.common.p_error = si.common.p_error;
si_eval.common.wo = si.common.wo;
si_eval.common.n = si.common.n;
if let Some(ref medium_interface) = si.common.medium_interface {
si_eval.common.medium_interface = Some(medium_interface.clone());
} else {
si_eval.common.medium_interface = None;
}
si_eval.uv = si.uv;
si_eval.dpdu = si.dpdu;
si_eval.dpdv = si.dpdv;
si_eval.dndu = si.dndu;
si_eval.dndv = si.dndv;
si_eval.dudx = Cell::new(si.dudx.get());
si_eval.dvdx = Cell::new(si.dvdx.get());
si_eval.dudy = Cell::new(si.dudy.get());
si_eval.dvdy = Cell::new(si.dvdy.get());
si_eval.dpdx = Cell::new(si.dpdx.get());
si_eval.dpdy = Cell::new(si.dpdy.get());
if let Some(primitive) = &si.primitive {
Arc::new(*primitive);
} else {
si_eval.primitive = None
}
si_eval.shading.n = si.shading.n;
si_eval.shading.dpdu = si.shading.dpdu;
si_eval.shading.dpdv = si.shading.dpdv;
si_eval.shading.dndu = si.shading.dndu;
si_eval.shading.dndv = si.shading.dndv;
if let Some(bsdf) = &si.bsdf {
Arc::new(bsdf.clone());
} else {
si_eval.bsdf = None
}
if let Some(shape) = &si.shape {
Arc::new(shape);
} else {
si_eval.shape = None
}
let mut du: Float = 0.5 as Float * (si.dudx.get().abs() + si.dudy.get().abs());
if du == 0.0 as Float {
du = 0.0005 as Float;
}
{
si_eval.common.p = si.common.p + si.shading.dpdu * du;
si_eval.uv = si.uv
+ Vector2f {
x: du,
y: 0.0 as Float,
};
si_eval.common.n =
(Normal3f::from(vec3_cross_vec3(&si.shading.dpdu, &si.shading.dpdv))
+ si.dndu * du)
.normalize();
}
let u_displace: Float = d.evaluate(&si_eval);
let mut dv: Float = 0.5 as Float * (si.dvdx.get().abs() + si.dvdy.get().abs());
if dv == 00 as Float {
dv = 0.0005 as Float;
}
{
si_eval.common.p = si.common.p + si.shading.dpdv * dv;
si_eval.uv = si.uv
+ Vector2f {
x: 0.0 as Float,
y: dv,
};
si_eval.common.n =
(Normal3f::from(vec3_cross_vec3(&si.shading.dpdu, &si.shading.dpdv))
+ si.dndv * dv)
.normalize();
}
let v_displace: Float = d.evaluate(&si_eval);
let displace: Float = d.evaluate(&si);
let dpdu: Vector3f = si.shading.dpdu
+ Vector3f::from(si.shading.n) * ((u_displace - displace) / du)
+ Vector3f::from(si.shading.dndu) * displace;
let dpdv: Vector3f = si.shading.dpdv
+ Vector3f::from(si.shading.n) * ((v_displace - displace) / dv)
+ Vector3f::from(si.shading.dndv) * displace;
let dndu = si.shading.dndu;
let dndv = si.shading.dndv;
si.set_shading_geometry(&dpdu, &dpdv, &dndu, &dndv, false);
}
}