1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
//! When light is incident on the surface, the surface scatters the
//! light, reflecting some of it back into the environment. There are
//! two main effects that need to be described to model this
//! reflection: the spectral distribution of the reflected light and
//! its directional distribution.

// std
use std::f32::consts::PI;
use std::fs::File;
use std::io::Read;
use std::path::Path;
use std::sync::Arc;
// others
use byteorder::{LittleEndian, ReadBytesExt};
use num::Zero;
use smallvec::SmallVec;
// pbrt
use crate::core::bssrdf::SeparableBssrdfAdapter;
use crate::core::geometry::{
    nrm_cross_vec3, nrm_dot_vec3f, nrm_faceforward_vec3, vec3_abs_dot_vec3f, vec3_dot_nrmf,
    vec3_dot_vec3f,
};
use crate::core::geometry::{Normal3f, Point2f, Vector3f, XYEnum};
use crate::core::interaction::SurfaceInteraction;
use crate::core::interpolation::{
    catmull_rom_weights, fourier, sample_catmull_rom_2d, sample_fourier,
};
use crate::core::material::TransportMode;
use crate::core::microfacet::MicrofacetDistribution;
use crate::core::pbrt::INV_PI;
use crate::core::pbrt::{clamp_t, lerp, radians};
use crate::core::pbrt::{Float, Spectrum};
use crate::core::rng::FLOAT_ONE_MINUS_EPSILON;
use crate::core::sampling::cosine_sample_hemisphere;
use crate::materials::disney::{
    DisneyClearCoat, DisneyDiffuse, DisneyFakeSS, DisneyRetro, DisneySheen,
};
use crate::materials::hair::HairBSDF;

const MAX_BXDFS: u8 = 8_u8;

/// https://seblagarde.wordpress.com/2013/04/29/memo-on-fresnel-equations/
///
/// The Schlick Fresnel approximation is:
///
/// R = R(0) + (1 - R(0)) (1 - cos theta)^5,
///
/// where R(0) is the reflectance at normal indicence.
fn schlick_weight(cos_theta: Float) -> Float {
    let m = clamp_t(1.0 - cos_theta, 0.0, 1.0);
    (m * m) * (m * m) * m
}

pub fn fr_schlick(r0: Float, cos_theta: Float) -> Float {
    lerp(schlick_weight(cos_theta), r0, 1.0)
}

fn fr_schlick_spectrum(r0: Spectrum, cos_theta: Float) -> Spectrum {
    lerp(schlick_weight(cos_theta), r0, Spectrum::from(1.0))
}

// see reflection.h

#[derive(Default)]
pub struct FourierBSDFTable {
    pub eta: Float,
    pub m_max: i32,
    pub n_channels: i32,
    pub n_mu: i32,
    pub mu: Vec<Float>,
    pub m: Vec<i32>,
    pub a_offset: Vec<i32>,
    pub a: Vec<Float>,
    pub a0: Vec<Float>,
    pub cdf: Vec<Float>,
    pub recip: Vec<Float>,
}

impl FourierBSDFTable {
    pub fn read(&mut self, filename: &str) -> bool {
        let path = Path::new(&filename);
        let result = File::open(path);
        if result.is_err() {
            println!("ERROR: Unable to open tabulated BSDF file {:?}", filename);
            return false;
        }
        // header
        let mut file = result.unwrap();
        let mut buffer = [0; 8];
        let io_result = file.read_exact(&mut buffer);
        if io_result.is_ok() {
            let header_exp: [u8; 8] = [b'S', b'C', b'A', b'T', b'F', b'U', b'N', 0x01_u8];
            if buffer == header_exp {
                let mut buffer: [i32; 9] = [0; 9]; // 9 32-bit (signed) integers (the last 3 are unused)
                let io_result = file.read_i32_into::<LittleEndian>(&mut buffer);
                if io_result.is_ok() {
                    let flags: i32 = buffer[0];
                    self.n_mu = buffer[1];
                    let n_coeffs: i32 = buffer[2];
                    self.m_max = buffer[3];
                    self.n_channels = buffer[4];
                    let n_bases: i32 = buffer[5];
                    let mut buffer: [f32; 1] = [0_f32; 1]; // 1 32-bit float
                    let io_result = file.read_f32_into::<LittleEndian>(&mut buffer);
                    if io_result.is_ok() {
                        self.eta = buffer[0];
                        let mut buffer: [i32; 4] = [0; 4]; // 4 32-bit (signed) integers are unused
                        let io_result = file.read_i32_into::<LittleEndian>(&mut buffer);
                        if io_result.is_ok() {
                            // only a subset of BSDF files are
                            // supported for simplicity, in
                            // particular: monochromatic and RGB files
                            // with uniform (i.e. non-textured)
                            // material properties
                            if flags != 1_i32
                                || (self.n_channels != 1_i32 && self.n_channels != 3_i32)
                                || n_bases != 1_i32
                            {
                                panic!(
                                    "ERROR: Tabulated BSDF file {:?} has an incompatible file format or version.", filename
                                );
                            }
                            // self.mu
                            self.mu.reserve_exact(self.n_mu as usize);
                            for _ in 0..self.n_mu as usize {
                                let f: f32 = file.read_f32::<LittleEndian>().unwrap();
                                self.mu.push(f as Float);
                            }
                            // self.cdf
                            self.cdf
                                .reserve_exact(self.n_mu as usize * self.n_mu as usize);
                            for _ in 0..(self.n_mu as usize * self.n_mu as usize) {
                                let f: f32 = file.read_f32::<LittleEndian>().unwrap();
                                self.cdf.push(f as Float);
                            }
                            // self.a0
                            self.a0
                                .reserve_exact(self.n_mu as usize * self.n_mu as usize);
                            // offset_and_length
                            let mut offset_and_length: Vec<i32> = Vec::with_capacity(
                                self.n_mu as usize * self.n_mu as usize * 2_usize,
                            );
                            for _ in 0..(self.n_mu as usize * self.n_mu as usize * 2_usize) {
                                let i: i32 = file.read_i32::<LittleEndian>().unwrap();
                                offset_and_length.push(i);
                            }
                            // self.a_offset
                            self.a_offset
                                .reserve_exact(self.n_mu as usize * self.n_mu as usize);
                            // self.m
                            self.m
                                .reserve_exact(self.n_mu as usize * self.n_mu as usize);
                            // self.a
                            self.a.reserve_exact(n_coeffs as usize);
                            for _ in 0..n_coeffs as usize {
                                let f: f32 = file.read_f32::<LittleEndian>().unwrap();
                                self.a.push(f as Float);
                            }
                            // fill self.a_offset, self.m, and self.a0 vectors
                            for i in 0..(self.n_mu as usize * self.n_mu as usize) {
                                let offset: i32 = offset_and_length[(2 * i) as usize];
                                let length: i32 = offset_and_length[(2 * i + 1) as usize];
                                self.a_offset.push(offset);
                                self.m.push(length);
                                if length > 0 {
                                    self.a0.push(self.a[offset as usize]);
                                } else {
                                    self.a0.push(0.0 as Float);
                                }
                            }
                            // self.recip
                            self.recip.reserve_exact(self.m_max as usize);
                            for i in 0..self.m_max as usize {
                                self.recip.push(1.0 as Float / i as Float);
                            }
                        } else {
                            panic!(
                                "ERROR: Tabulated BSDF file {:?} has an incompatible file format or version.", filename
                            );
                        }
                    } else {
                        panic!(
                            "ERROR: Tabulated BSDF file {:?} has an incompatible file format or version.", filename
                        );
                    }
                } else {
                    panic!(
                        "ERROR: Tabulated BSDF file {:?} has an incompatible file format or version.", filename
                    );
                }
            } else {
                panic!(
                    "ERROR: Tabulated BSDF file {:?} has an incompatible file format or version.",
                    filename
                );
            }
        }
        true
    }
    pub fn get_ak(&self, offset_i: i32, offset_o: i32, mptr: &mut i32) -> i32 {
        let idx: i32 = offset_o * self.n_mu + offset_i;
        assert!(
            idx >= 0,
            "get_ak({:?}, {:?}, ...) with idx = {:?}",
            offset_i,
            offset_o,
            idx
        );
        *mptr = self.m[idx as usize];
        self.a_offset[idx as usize]
    }
    pub fn get_weights_and_offset(
        &self,
        cos_theta: Float,
        offset: &mut i32,
        weights: &mut [Float; 4],
    ) -> bool {
        catmull_rom_weights(&self.mu, cos_theta, offset, weights)
    }
}

#[derive(Clone)]
pub struct Bsdf {
    pub eta: Float,
    /// shading normal
    pub ns: Normal3f,
    /// geometric normal
    pub ng: Normal3f,
    pub ss: Vector3f,
    pub ts: Vector3f,
    pub bxdfs: Vec<Bxdf>,
}

impl Bsdf {
    pub fn new(si: &SurfaceInteraction, eta: Float) -> Self {
        let ss = si.shading.dpdu.normalize();
        Bsdf {
            eta,
            ns: si.shading.n,
            ng: si.common.n,
            ss,
            ts: nrm_cross_vec3(&si.shading.n, &ss),
            bxdfs: Vec::with_capacity(8),
        }
    }
    pub fn add(&mut self, b: Bxdf) {
        assert!(self.bxdfs.len() < MAX_BXDFS as usize);
        self.bxdfs.push(b);
    }
    pub fn num_components(&self, flags: u8) -> u8 {
        let mut num: u8 = 0;
        let n_bxdfs: usize = self.bxdfs.len();
        for i in 0..n_bxdfs {
            if self.bxdfs[i].matches_flags(flags) {
                num += 1;
            }
        }
        num
    }
    pub fn world_to_local(&self, v: &Vector3f) -> Vector3f {
        Vector3f {
            x: vec3_dot_vec3f(v, &self.ss),
            y: vec3_dot_vec3f(v, &self.ts),
            z: vec3_dot_vec3f(v, &Vector3f::from(self.ns)),
        }
    }
    pub fn local_to_world(&self, v: &Vector3f) -> Vector3f {
        Vector3f {
            x: self.ss.x * v.x + self.ts.x * v.y + self.ns.x * v.z,
            y: self.ss.y * v.x + self.ts.y * v.y + self.ns.y * v.z,
            z: self.ss.z * v.x + self.ts.z * v.y + self.ns.z * v.z,
        }
    }
    pub fn f(&self, wo_w: &Vector3f, wi_w: &Vector3f, flags: u8) -> Spectrum {
        // TODO: ProfilePhase pp(Prof::BSDFEvaluation);
        let wi: Vector3f = self.world_to_local(wi_w);
        let wo: Vector3f = self.world_to_local(wo_w);
        if wo.z == 0.0 as Float {
            return Spectrum::new(0.0 as Float);
        }
        let reflect: bool = (vec3_dot_vec3f(wi_w, &Vector3f::from(self.ng))
            * vec3_dot_vec3f(wo_w, &Vector3f::from(self.ng)))
            > 0.0 as Float;
        let mut f: Spectrum = Spectrum::new(0.0 as Float);
        let n_bxdfs: usize = self.bxdfs.len();
        for i in 0..n_bxdfs {
            if self.bxdfs[i].matches_flags(flags)
                && ((reflect && (self.bxdfs[i].get_type() & BxdfType::BsdfReflection as u8 > 0_u8))
                    || (!reflect
                        && (self.bxdfs[i].get_type() & BxdfType::BsdfTransmission as u8 > 0_u8)))
            {
                f += self.bxdfs[i].f(&wo, &wi);
            }
        }
        f
    }
    /// Calls the individual Bxdf::sample_f() methods to generate samples.
    pub fn sample_f(
        &self,
        wo_world: &Vector3f,
        wi_world: &mut Vector3f,
        u: &Point2f,
        pdf: &mut Float,
        bsdf_flags: u8,
        sampled_type: &mut u8,
    ) -> Spectrum {
        // TODO: ProfilePhase pp(Prof::BSDFSampling);
        // choose which _BxDF_ to sample
        let matching_comps: u8 = self.num_components(bsdf_flags);
        if matching_comps == 0 {
            *pdf = 0.0 as Float;
            *sampled_type = 0_u8;
            return Spectrum::default();
        }
        let comp: u8 = std::cmp::min(
            (u[XYEnum::X] * matching_comps as Float).floor() as u8,
            matching_comps - 1_u8,
        );
        // get _BxDF_ pointer for chosen component
        let mut bxdf: Option<&Bxdf> = None;
        let mut count: i8 = comp as i8;
        let n_bxdfs: usize = self.bxdfs.len();
        let mut bxdf_index: usize = 0_usize;
        for i in 0..n_bxdfs {
            let matches: bool = self.bxdfs[i].matches_flags(bsdf_flags);
            if matches && count == 0 {
                count -= 1_i8;
                bxdf = self.bxdfs.get(i);
                bxdf_index = i;
                break;
            } else {
                // fix count
                if matches {
                    // C++ version does this in a single line:
                    // if (bxdfs[i]->MatchesFlags(type) && count-- == 0)
                    count -= 1_i8;
                }
            }
        }

        if let Some(value) = bxdf {
            let bxdf = value;
            // TODO: println!("BSDF::Sample_f chose comp = {:?} /
            // matching = {:?}, bxdf: {:?}", comp, matching_comps,
            // bxdf);

            // remap _BxDF_ sample _u_ to $[0,1)^2$
            let u_remapped: Point2f = Point2f {
                x: (u[XYEnum::X] * matching_comps as Float - comp as Float)
                    .min(FLOAT_ONE_MINUS_EPSILON),
                y: u[XYEnum::Y],
            };
            // sample chosen _BxDF_
            let mut wi: Vector3f = Vector3f::default();
            let wo: Vector3f = self.world_to_local(wo_world);
            if wo.z == 0.0 as Float {
                return Spectrum::default();
            }
            *pdf = 0.0 as Float;
            if *sampled_type != 0_u8 {
                *sampled_type = bxdf.get_type();
            }
            let mut f: Spectrum = bxdf.sample_f(&wo, &mut wi, &u_remapped, pdf, sampled_type);
            // let mut ratio: Spectrum = Spectrum::default();
            // if *pdf > 0.0 as Float {
            //     ratio = f / *pdf;
            // }
            // println!("For wo = {:?}, sampled f = {:?}, pdf = {:?}, ratio = {:?}, wi = {:?}",
            //          wo,
            //          f,
            //          *pdf,
            //          ratio,
            //          wi);
            if *pdf == 0.0 as Float {
                if *sampled_type != 0_u8 {
                    *sampled_type = 0_u8;
                }
                return Spectrum::default();
            }
            *wi_world = self.local_to_world(&wi);
            // compute overall PDF with all matching _BxDF_s
            if (bxdf.get_type() & BxdfType::BsdfSpecular as u8 == 0_u8) && matching_comps > 1_u8 {
                for i in 0..n_bxdfs {
                    // instead of self.bxdfs[i] != bxdf we compare stored index
                    if bxdf_index != i && self.bxdfs[i].matches_flags(bsdf_flags) {
                        *pdf += self.bxdfs[i].pdf(&wo, &wi);
                    }
                }
            }
            if matching_comps > 1_u8 {
                *pdf /= matching_comps as Float;
            }
            // compute value of BSDF for sampled direction
            if bxdf.get_type() & BxdfType::BsdfSpecular as u8 == 0_u8 {
                let reflect: bool = vec3_dot_nrmf(&*wi_world, &self.ng)
                    * vec3_dot_nrmf(wo_world, &self.ng)
                    > 0.0 as Float;
                f = Spectrum::default();
                for i in 0..n_bxdfs {
                    if self.bxdfs[i].matches_flags(bsdf_flags)
                        && ((reflect
                            && ((self.bxdfs[i].get_type() & BxdfType::BsdfReflection as u8)
                                != 0_u8))
                            || (!reflect
                                && ((self.bxdfs[i].get_type() & BxdfType::BsdfTransmission as u8)
                                    != 0_u8)))
                    {
                        f += self.bxdfs[i].f(&wo, &wi);
                    }
                }
            }
            // let mut ratio: Spectrum = Spectrum::default();
            // if *pdf > 0.0 as Float {
            //     ratio = f / *pdf;
            // }
            // println!("Overall f = {:?}, pdf = {:?}, ratio = {:?}", f, *pdf, ratio);
            f
        } else {
            Spectrum::default()
        }
    }
    pub fn pdf(&self, wo_world: &Vector3f, wi_world: &Vector3f, bsdf_flags: u8) -> Float {
        // TODO: ProfilePhase pp(Prof::BSDFPdf);
        let n_bxdfs: usize = self.bxdfs.len();
        if n_bxdfs == 0 {
            return 0.0 as Float;
        }
        let wo: Vector3f = self.world_to_local(wo_world);
        let wi: Vector3f = self.world_to_local(wi_world);
        if wo.z == 0.0 as Float {
            return 0.0 as Float;
        }
        let mut pdf: Float = 0.0 as Float;
        let mut matching_comps: u8 = 0;
        for i in 0..n_bxdfs {
            if self.bxdfs[i].matches_flags(bsdf_flags) {
                matching_comps += 1;
                pdf += self.bxdfs[i].pdf(&wo, &wi);
            }
        }
        if matching_comps > 0 {
            pdf / matching_comps as Float
        } else {
            0.0 as Float
        }
    }
}

#[repr(u8)]
pub enum BxdfType {
    BsdfReflection = 1,
    BsdfTransmission = 2,
    BsdfDiffuse = 4,
    BsdfGlossy = 8,
    BsdfSpecular = 16,
    BsdfAll = 31,
}

#[derive(Default, Copy, Clone)]
pub struct NoBxdf {}

#[derive(Clone)]
pub enum Bxdf {
    Empty(NoBxdf),
    SpecRefl(SpecularReflection),
    SpecTrans(SpecularTransmission),
    FresnelSpec(FresnelSpecular),
    LambertianRefl(LambertianReflection),
    LambertianTrans(LambertianTransmission),
    OrenNayarRefl(OrenNayar),
    MicrofacetRefl(MicrofacetReflection),
    MicrofacetTrans(MicrofacetTransmission),
    FresnelBlnd(FresnelBlend),
    Fourier(FourierBSDF),
    // bssrdf.rs
    Bssrdf(SeparableBssrdfAdapter),
    // disney.rs
    DisDiff(DisneyDiffuse),
    DisSS(DisneyFakeSS),
    DisRetro(DisneyRetro),
    DisSheen(DisneySheen),
    DisClearCoat(DisneyClearCoat),
    // hair.rs
    Hair(HairBSDF),
}

impl Bxdf {
    pub fn matches_flags(&self, t: u8) -> bool {
        match self {
            Bxdf::Empty(_bxdf) => false,
            Bxdf::SpecRefl(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::SpecTrans(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::FresnelSpec(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::LambertianRefl(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::LambertianTrans(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::OrenNayarRefl(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::MicrofacetRefl(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::MicrofacetTrans(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::FresnelBlnd(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::Fourier(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::Bssrdf(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::DisDiff(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::DisSS(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::DisRetro(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::DisSheen(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::DisClearCoat(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
            Bxdf::Hair(bxdf) => bxdf.get_type() & t == bxdf.get_type(),
        }
    }
    pub fn f(&self, wo: &Vector3f, wi: &Vector3f) -> Spectrum {
        match self {
            Bxdf::Empty(_bxdf) => Spectrum::default(),
            Bxdf::SpecRefl(bxdf) => bxdf.f(wo, wi),
            Bxdf::SpecTrans(bxdf) => bxdf.f(wo, wi),
            Bxdf::FresnelSpec(bxdf) => bxdf.f(wo, wi),
            Bxdf::LambertianRefl(bxdf) => bxdf.f(wo, wi),
            Bxdf::LambertianTrans(bxdf) => bxdf.f(wo, wi),
            Bxdf::OrenNayarRefl(bxdf) => bxdf.f(wo, wi),
            Bxdf::MicrofacetRefl(bxdf) => bxdf.f(wo, wi),
            Bxdf::MicrofacetTrans(bxdf) => bxdf.f(wo, wi),
            Bxdf::FresnelBlnd(bxdf) => bxdf.f(wo, wi),
            Bxdf::Fourier(bxdf) => bxdf.f(wo, wi),
            Bxdf::Bssrdf(bxdf) => bxdf.f(wo, wi),
            Bxdf::DisDiff(bxdf) => bxdf.f(wo, wi),
            Bxdf::DisSS(bxdf) => bxdf.f(wo, wi),
            Bxdf::DisRetro(bxdf) => bxdf.f(wo, wi),
            Bxdf::DisSheen(bxdf) => bxdf.f(wo, wi),
            Bxdf::DisClearCoat(bxdf) => bxdf.f(wo, wi),
            Bxdf::Hair(bxdf) => bxdf.f(wo, wi),
        }
    }
    /// Sample the BxDF for the given outgoing direction, using the given pair of uniform samples.
    ///
    /// The default implementation uses importance sampling by using a cosine-weighted
    /// distribution.
    pub fn sample_f(
        &self,
        wo: &Vector3f,
        wi: &mut Vector3f,
        u: &Point2f,
        pdf: &mut Float,
        sampled_type: &mut u8,
    ) -> Spectrum {
        match self {
            Bxdf::Empty(_bxdf) => Spectrum::default(),
            Bxdf::SpecRefl(bxdf) => bxdf.sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::SpecTrans(bxdf) => bxdf.sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::FresnelSpec(bxdf) => bxdf.sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::LambertianRefl(bxdf) => bxdf.sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::LambertianTrans(bxdf) => bxdf.sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::OrenNayarRefl(bxdf) => bxdf.sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::MicrofacetRefl(bxdf) => bxdf.sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::MicrofacetTrans(bxdf) => bxdf.sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::FresnelBlnd(bxdf) => bxdf.sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::Fourier(bxdf) => bxdf.sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::Bssrdf(_bxdf) => self.default_sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::DisDiff(_bxdf) => self.default_sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::DisSS(_bxdf) => self.default_sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::DisRetro(_bxdf) => self.default_sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::DisSheen(_bxdf) => self.default_sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::DisClearCoat(bxdf) => bxdf.sample_f(wo, wi, u, pdf, sampled_type),
            Bxdf::Hair(bxdf) => bxdf.sample_f(wo, wi, u, pdf, sampled_type),
        }
    }
    fn default_sample_f(
        &self,
        wo: &Vector3f,
        wi: &mut Vector3f,
        u: &Point2f,
        pdf: &mut Float,
        _sampled_type: &mut u8,
    ) -> Spectrum {
        *wi = cosine_sample_hemisphere(&u);
        if wo.z < 0.0 {
            wi.z *= -1.0;
        }
        *pdf = self.pdf(wo, &wi);
        self.f(wo, &wi)
    }
    /// Evaluate the PDF for the given outgoing and incoming directions.
    ///
    /// Note: this method needs to be consistent with ```Bxdf::sample_f()```.
    pub fn pdf(&self, wo: &Vector3f, wi: &Vector3f) -> Float {
        match self {
            Bxdf::Empty(_bxdf) => 0.0 as Float,
            Bxdf::SpecRefl(bxdf) => bxdf.pdf(wo, wi),
            Bxdf::SpecTrans(bxdf) => bxdf.pdf(wo, wi),
            Bxdf::FresnelSpec(bxdf) => bxdf.pdf(wo, wi),
            Bxdf::LambertianRefl(bxdf) => bxdf.pdf(wo, wi),
            Bxdf::LambertianTrans(bxdf) => bxdf.pdf(wo, wi),
            Bxdf::OrenNayarRefl(bxdf) => bxdf.pdf(wo, wi),
            Bxdf::MicrofacetRefl(bxdf) => bxdf.pdf(wo, wi),
            Bxdf::MicrofacetTrans(bxdf) => bxdf.pdf(wo, wi),
            Bxdf::FresnelBlnd(bxdf) => bxdf.pdf(wo, wi),
            Bxdf::Fourier(bxdf) => bxdf.pdf(wo, wi),
            Bxdf::Bssrdf(_bxdf) => self.default_pdf(wo, wi),
            Bxdf::DisDiff(_bxdf) => self.default_pdf(wo, wi),
            Bxdf::DisSS(_bxdf) => self.default_pdf(wo, wi),
            Bxdf::DisRetro(_bxdf) => self.default_pdf(wo, wi),
            Bxdf::DisSheen(_bxdf) => self.default_pdf(wo, wi),
            Bxdf::DisClearCoat(bxdf) => bxdf.pdf(wo, wi),
            Bxdf::Hair(bxdf) => bxdf.pdf(wo, wi),
        }
    }
    fn default_pdf(&self, wo: &Vector3f, wi: &Vector3f) -> Float {
        if vec3_same_hemisphere_vec3(wo, wi) {
            abs_cos_theta(wi) * INV_PI
        } else {
            0.0
        }
    }
    pub fn get_type(&self) -> u8 {
        match self {
            Bxdf::Empty(_bxdf) => 0_u8,
            Bxdf::SpecRefl(bxdf) => bxdf.get_type(),
            Bxdf::SpecTrans(bxdf) => bxdf.get_type(),
            Bxdf::FresnelSpec(bxdf) => bxdf.get_type(),
            Bxdf::LambertianRefl(bxdf) => bxdf.get_type(),
            Bxdf::LambertianTrans(bxdf) => bxdf.get_type(),
            Bxdf::OrenNayarRefl(bxdf) => bxdf.get_type(),
            Bxdf::MicrofacetRefl(bxdf) => bxdf.get_type(),
            Bxdf::MicrofacetTrans(bxdf) => bxdf.get_type(),
            Bxdf::FresnelBlnd(bxdf) => bxdf.get_type(),
            Bxdf::Fourier(bxdf) => bxdf.get_type(),
            Bxdf::Bssrdf(bxdf) => bxdf.get_type(),
            Bxdf::DisDiff(bxdf) => bxdf.get_type(),
            Bxdf::DisSS(bxdf) => bxdf.get_type(),
            Bxdf::DisRetro(bxdf) => bxdf.get_type(),
            Bxdf::DisSheen(bxdf) => bxdf.get_type(),
            Bxdf::DisClearCoat(bxdf) => bxdf.get_type(),
            Bxdf::Hair(bxdf) => bxdf.get_type(),
        }
    }
}

#[derive(Copy, Clone)]
pub enum Fresnel {
    NoOp(FresnelNoOp),
    Conductor(FresnelConductor),
    Dielectric(FresnelDielectric),
    Disney(DisneyFresnel),
}

impl Fresnel {
    pub fn evaluate(&self, cos_theta_i: Float) -> Spectrum {
        match self {
            Fresnel::NoOp(fresnel) => fresnel.evaluate(cos_theta_i),
            Fresnel::Conductor(fresnel) => fresnel.evaluate(cos_theta_i),
            Fresnel::Dielectric(fresnel) => fresnel.evaluate(cos_theta_i),
            Fresnel::Disney(fresnel) => fresnel.evaluate(cos_theta_i),
        }
    }
}

/// Specialized Fresnel function used for the specular component, based on
/// a mixture between dielectric and the Schlick Fresnel approximation.
#[derive(Debug, Clone, Copy)]
pub struct DisneyFresnel {
    r0: Spectrum,
    metallic: Float,
    eta: Float,
}

impl DisneyFresnel {
    pub fn new(r0: Spectrum, metallic: Float, eta: Float) -> DisneyFresnel {
        DisneyFresnel { r0, metallic, eta }
    }
    pub fn evaluate(&self, cos_i: Float) -> Spectrum {
        lerp(
            self.metallic,
            Spectrum::from(fr_dielectric(cos_i, 1.0, self.eta)),
            fr_schlick_spectrum(self.r0, cos_i),
        )
    }
}

#[derive(Debug, Default, Copy, Clone)]
pub struct FresnelConductor {
    pub eta_i: Spectrum,
    pub eta_t: Spectrum,
    pub k: Spectrum,
}

impl FresnelConductor {
    pub fn evaluate(&self, cos_theta_i: Float) -> Spectrum {
        fr_conductor(cos_theta_i, self.eta_i, self.eta_t, self.k)
    }
}

#[derive(Debug, Default, Copy, Clone)]
pub struct FresnelDielectric {
    pub eta_i: Float,
    pub eta_t: Float,
}

impl FresnelDielectric {
    pub fn evaluate(&self, cos_theta_i: Float) -> Spectrum {
        Spectrum::new(fr_dielectric(cos_theta_i, self.eta_i, self.eta_t))
    }
}

#[derive(Debug, Default, Copy, Clone)]
pub struct FresnelNoOp {}

impl FresnelNoOp {
    pub fn evaluate(&self, _cos_theta_i: Float) -> Spectrum {
        Spectrum::new(1.0 as Float)
    }
}

#[derive(Copy, Clone)]
pub struct SpecularReflection {
    pub r: Spectrum,
    pub fresnel: Fresnel,
    pub sc_opt: Option<Spectrum>,
}

impl SpecularReflection {
    pub fn new(r: Spectrum, fresnel: Fresnel, sc_opt: Option<Spectrum>) -> Self {
        SpecularReflection { r, fresnel, sc_opt }
    }
    pub fn f(&self, _wo: &Vector3f, _wi: &Vector3f) -> Spectrum {
        Spectrum::new(0.0 as Float)
    }
    pub fn sample_f(
        &self,
        wo: &Vector3f,
        wi: &mut Vector3f,
        _sample: &Point2f,
        pdf: &mut Float,
        _sampled_type: &mut u8,
    ) -> Spectrum {
        // compute perfect specular reflection direction
        *wi = Vector3f {
            x: -wo.x,
            y: -wo.y,
            z: wo.z,
        };
        *pdf = 1.0 as Float;
        let cos_theta_i: Float = cos_theta(&*wi);
        if let Some(sc) = self.sc_opt {
            sc * self.fresnel.evaluate(cos_theta_i) * self.r / abs_cos_theta(&*wi)
        } else {
            self.fresnel.evaluate(cos_theta_i) * self.r / abs_cos_theta(&*wi)
        }
    }
    pub fn pdf(&self, _wo: &Vector3f, _wi: &Vector3f) -> Float {
        0.0 as Float
    }
    pub fn get_type(&self) -> u8 {
        BxdfType::BsdfReflection as u8 | BxdfType::BsdfSpecular as u8
    }
}

#[derive(Copy, Clone)]
pub struct SpecularTransmission {
    pub t: Spectrum,
    pub eta_a: Float,
    pub eta_b: Float,
    pub fresnel: FresnelDielectric,
    pub mode: TransportMode,
    pub sc_opt: Option<Spectrum>,
}

impl SpecularTransmission {
    pub fn new(
        t: Spectrum,
        eta_a: Float,
        eta_b: Float,
        mode: TransportMode,
        sc_opt: Option<Spectrum>,
    ) -> Self {
        SpecularTransmission {
            t,
            eta_a,
            eta_b,
            fresnel: FresnelDielectric {
                eta_i: eta_a,
                eta_t: eta_b,
            },
            mode,
            sc_opt,
        }
    }
    pub fn f(&self, _wo: &Vector3f, _wi: &Vector3f) -> Spectrum {
        Spectrum::new(0.0 as Float)
    }
    pub fn sample_f(
        &self,
        wo: &Vector3f,
        wi: &mut Vector3f,
        _sample: &Point2f,
        pdf: &mut Float,
        _sampled_type: &mut u8,
    ) -> Spectrum {
        // figure out which $\eta$ is incident and which is transmitted
        let entering: bool = cos_theta(wo) > 0.0;
        let eta_i = if entering { self.eta_a } else { self.eta_b };
        let eta_t = if entering { self.eta_b } else { self.eta_a };
        // compute ray direction for specular transmission
        if !refract(
            wo,
            &nrm_faceforward_vec3(
                &Normal3f {
                    x: 0.0,
                    y: 0.0,
                    z: 1.0,
                },
                wo,
            ),
            eta_i / eta_t,
            wi,
        ) {
            return Spectrum::default();
        }
        *pdf = 1.0;
        let mut ft: Spectrum =
            self.t * (Spectrum::new(1.0 as Float) - self.fresnel.evaluate(cos_theta(&*wi)));
        // account for non-symmetry with transmission to different medium
        if self.mode == TransportMode::Radiance {
            ft *= Spectrum::new((eta_i * eta_i) / (eta_t * eta_t));
        }
        if let Some(sc) = self.sc_opt {
            sc * ft / abs_cos_theta(&*wi)
        } else {
            ft / abs_cos_theta(&*wi)
        }
    }
    pub fn pdf(&self, wo: &Vector3f, wi: &Vector3f) -> Float {
        if vec3_same_hemisphere_vec3(wo, wi) {
            abs_cos_theta(wi) * INV_PI
        } else {
            0.0 as Float
        }
    }
    pub fn get_type(&self) -> u8 {
        BxdfType::BsdfTransmission as u8 | BxdfType::BsdfSpecular as u8
    }
}

#[derive(Copy, Clone)]
pub struct FresnelSpecular {
    pub r: Spectrum,
    pub t: Spectrum,
    pub eta_a: Float,
    pub eta_b: Float,
    pub mode: TransportMode,
    pub sc_opt: Option<Spectrum>,
}

impl FresnelSpecular {
    pub fn new(
        r: Spectrum,
        t: Spectrum,
        eta_a: Float,
        eta_b: Float,
        mode: TransportMode,
        sc_opt: Option<Spectrum>,
    ) -> Self {
        FresnelSpecular {
            r,
            t,
            eta_a,
            eta_b,
            mode,
            sc_opt,
        }
    }
    pub fn f(&self, _wo: &Vector3f, _wi: &Vector3f) -> Spectrum {
        Spectrum::new(0.0 as Float)
    }
    pub fn sample_f(
        &self,
        wo: &Vector3f,
        wi: &mut Vector3f,
        sample: &Point2f,
        pdf: &mut Float,
        sampled_type: &mut u8,
    ) -> Spectrum {
        let ct: Float = cos_theta(wo);
        let f: Float = fr_dielectric(ct, self.eta_a, self.eta_b);
        if sample[XYEnum::X] < f {
            // compute specular reflection for _FresnelSpecular_

            // compute perfect specular reflection direction
            *wi = Vector3f {
                x: -wo.x,
                y: -wo.y,
                z: wo.z,
            };
            if *sampled_type != 0_u8 {
                *sampled_type = BxdfType::BsdfReflection as u8 | BxdfType::BsdfSpecular as u8
            }
            *pdf = f;
            if let Some(sc) = self.sc_opt {
                sc * self.r * f / abs_cos_theta(&*wi)
            } else {
                self.r * f / abs_cos_theta(&*wi)
            }
        } else {
            // compute specular transmission for _FresnelSpecular_

            // figure out which $\eta$ is incident and which is transmitted
            let entering: bool = cos_theta(wo) > 0.0 as Float;
            let eta_i = if entering { self.eta_a } else { self.eta_b };
            let eta_t = if entering { self.eta_b } else { self.eta_a };
            // compute ray direction for specular transmission
            if !refract(
                wo,
                &nrm_faceforward_vec3(
                    &Normal3f {
                        x: 0.0,
                        y: 0.0,
                        z: 1.0,
                    },
                    wo,
                ),
                eta_i / eta_t,
                wi,
            ) {
                return Spectrum::default();
            }
            let mut ft: Spectrum = self.t * (1.0 as Float - f);
            // account for non-symmetry with transmission to different medium
            if self.mode == TransportMode::Radiance {
                ft *= Spectrum::new((eta_i * eta_i) / (eta_t * eta_t));
            }
            if *sampled_type != 0_u8 {
                *sampled_type = BxdfType::BsdfTransmission as u8 | BxdfType::BsdfSpecular as u8
            }
            *pdf = 1.0 as Float - f;
            if let Some(sc) = self.sc_opt {
                sc * ft / abs_cos_theta(&*wi)
            } else {
                ft / abs_cos_theta(&*wi)
            }
        }
    }
    pub fn pdf(&self, wo: &Vector3f, wi: &Vector3f) -> Float {
        if vec3_same_hemisphere_vec3(wo, wi) {
            abs_cos_theta(wi) * INV_PI
        } else {
            0.0 as Float
        }
    }
    pub fn get_type(&self) -> u8 {
        BxdfType::BsdfReflection as u8
            | BxdfType::BsdfTransmission as u8
            | BxdfType::BsdfSpecular as u8
    }
}

#[derive(Debug, Default, Copy, Clone)]
pub struct LambertianReflection {
    pub r: Spectrum,
    pub sc_opt: Option<Spectrum>,
}

impl LambertianReflection {
    pub fn new(r: Spectrum, sc_opt: Option<Spectrum>) -> Self {
        LambertianReflection { r, sc_opt }
    }
    pub fn f(&self, _wo: &Vector3f, _wi: &Vector3f) -> Spectrum {
        if let Some(sc) = self.sc_opt {
            sc * self.r * Spectrum::new(INV_PI)
        } else {
            self.r * Spectrum::new(INV_PI)
        }
    }
    pub fn sample_f(
        &self,
        wo: &Vector3f,
        wi: &mut Vector3f,
        u: &Point2f,
        pdf: &mut Float,
        _sampled_type: &mut u8,
    ) -> Spectrum {
        *wi = cosine_sample_hemisphere(&u);
        if wo.z < 0.0 as Float {
            wi.z *= -1.0 as Float;
        }
        *pdf = self.pdf(wo, &*wi);
        if let Some(sc) = self.sc_opt {
            sc * self.f(wo, &*wi)
        } else {
            self.f(wo, &*wi)
        }
    }
    pub fn pdf(&self, wo: &Vector3f, wi: &Vector3f) -> Float {
        if vec3_same_hemisphere_vec3(wo, wi) {
            abs_cos_theta(wi) * INV_PI
        } else {
            0.0 as Float
        }
    }
    pub fn get_type(&self) -> u8 {
        BxdfType::BsdfDiffuse as u8 | BxdfType::BsdfReflection as u8
    }
}

#[derive(Copy, Clone, Debug)]
pub struct LambertianTransmission {
    pub t: Spectrum,
    pub sc_opt: Option<Spectrum>,
}

impl LambertianTransmission {
    pub fn new(t: Spectrum, sc_opt: Option<Spectrum>) -> Self {
        LambertianTransmission { t, sc_opt }
    }
    pub fn f(&self, _wo: &Vector3f, _wi: &Vector3f) -> Spectrum {
        if let Some(sc) = self.sc_opt {
            sc * self.t * INV_PI
        } else {
            self.t * INV_PI
        }
    }
    pub fn sample_f(
        &self,
        wo: &Vector3f,
        wi: &mut Vector3f,
        u: &Point2f,
        pdf: &mut Float,
        _sampled_type: &mut u8,
    ) -> Spectrum {
        *wi = cosine_sample_hemisphere(&u);
        if wo.z > 0.0 as Float {
            wi.z *= -1.0 as Float;
        }
        *pdf = self.pdf(wo, &*wi);
        if let Some(sc) = self.sc_opt {
            sc * self.f(wo, &*wi)
        } else {
            self.f(wo, &*wi)
        }
    }
    pub fn pdf(&self, wo: &Vector3f, wi: &Vector3f) -> Float {
        if !vec3_same_hemisphere_vec3(wo, wi) {
            abs_cos_theta(wi) * INV_PI
        } else {
            0.0 as Float
        }
    }
    pub fn get_type(&self) -> u8 {
        BxdfType::BsdfDiffuse as u8 | BxdfType::BsdfTransmission as u8
    }
}

#[derive(Copy, Clone)]
pub struct OrenNayar {
    pub r: Spectrum,
    pub a: Float,
    pub b: Float,
    pub sc_opt: Option<Spectrum>,
}

impl OrenNayar {
    pub fn new(r: Spectrum, sigma: Float, sc_opt: Option<Spectrum>) -> Self {
        let sigma = radians(sigma);
        let sigma2: Float = sigma * sigma;
        OrenNayar {
            r,
            a: 1.0 - (sigma2 / (2.0 * (sigma2 + 0.33))),
            b: 0.45 * sigma2 / (sigma2 + 0.09),
            sc_opt,
        }
    }
    pub fn f(&self, wo: &Vector3f, wi: &Vector3f) -> Spectrum {
        let sin_theta_i: Float = sin_theta(wi);
        let sin_theta_o: Float = sin_theta(wo);
        // compute cosine term of Oren-Nayar model
        let max_cos = if sin_theta_i > 1.0e-4 && sin_theta_o > 1.0e-4 {
            let sin_phi_i: Float = sin_phi(wi);
            let cos_phi_i: Float = cos_phi(wi);
            let sin_phi_o: Float = sin_phi(wo);
            let cos_phi_o: Float = cos_phi(wo);
            let d_cos: Float = cos_phi_i * cos_phi_o + sin_phi_i * sin_phi_o;
            d_cos.max(0.0 as Float)
        } else {
            0.0 as Float
        };
        // compute sine and tangent terms of Oren-Nayar model
        let sin_alpha: Float;
        let tan_beta = if abs_cos_theta(wi) > abs_cos_theta(wo) {
            sin_alpha = sin_theta_o;
            sin_theta_i / abs_cos_theta(wi)
        } else {
            sin_alpha = sin_theta_i;
            sin_theta_o / abs_cos_theta(wo)
        };
        if let Some(sc) = self.sc_opt {
            sc * self.r * Spectrum::new(INV_PI * (self.a + self.b * max_cos * sin_alpha * tan_beta))
        } else {
            self.r * Spectrum::new(INV_PI * (self.a + self.b * max_cos * sin_alpha * tan_beta))
        }
    }
    pub fn sample_f(
        &self,
        wo: &Vector3f,
        wi: &mut Vector3f,
        u: &Point2f,
        pdf: &mut Float,
        _sampled_type: &mut u8,
    ) -> Spectrum {
        *wi = cosine_sample_hemisphere(u);
        if wo.z < 0.0 as Float {
            wi.z *= -1.0 as Float;
        }
        *pdf = self.pdf(wo, &*wi);
        if let Some(sc) = self.sc_opt {
            sc * self.f(wo, &*wi)
        } else {
            self.f(wo, &*wi)
        }
    }
    pub fn pdf(&self, wo: &Vector3f, wi: &Vector3f) -> Float {
        if vec3_same_hemisphere_vec3(wo, wi) {
            abs_cos_theta(wi) * INV_PI
        } else {
            0.0 as Float
        }
    }
    pub fn get_type(&self) -> u8 {
        BxdfType::BsdfDiffuse as u8 | BxdfType::BsdfReflection as u8
    }
}

#[derive(Copy, Clone)]
pub struct MicrofacetReflection {
    pub r: Spectrum,
    pub distribution: MicrofacetDistribution,
    pub fresnel: Fresnel,
    pub sc_opt: Option<Spectrum>,
}

impl MicrofacetReflection {
    pub fn new(
        r: Spectrum,
        distribution: MicrofacetDistribution,
        fresnel: Fresnel,
        sc_opt: Option<Spectrum>,
    ) -> Self {
        MicrofacetReflection {
            r,
            distribution,
            fresnel,
            sc_opt,
        }
    }
    pub fn f(&self, wo: &Vector3f, wi: &Vector3f) -> Spectrum {
        let cos_theta_o: Float = abs_cos_theta(wo);
        let cos_theta_i: Float = abs_cos_theta(wi);
        let mut wh: Vector3f = *wi + *wo;
        // handle degenerate cases for microfacet reflection
        if cos_theta_i == 0.0 || cos_theta_o == 0.0 {
            return Spectrum::new(0.0);
        }
        if wh.x == 0.0 && wh.y == 0.0 && wh.z == 0.0 {
            return Spectrum::new(0.0);
        }
        wh = wh.normalize();
        let dot: Float = vec3_dot_vec3f(wi, &wh);
        let f: Spectrum = self.fresnel.evaluate(dot);
        if let Some(sc) = self.sc_opt {
            sc * self.r * self.distribution.d(&wh) * self.distribution.g(wo, wi) * f
                / (4.0 as Float * cos_theta_i * cos_theta_o)
        } else {
            self.r * self.distribution.d(&wh) * self.distribution.g(wo, wi) * f
                / (4.0 as Float * cos_theta_i * cos_theta_o)
        }
    }

    pub fn sample_f(
        &self,
        wo: &Vector3f,
        wi: &mut Vector3f,
        u: &Point2f,
        pdf: &mut Float,
        _sampled_type: &mut u8,
    ) -> Spectrum {
        // sample microfacet orientation $\wh$ and reflected direction $\wi$
        if wo.z == 0.0 as Float {
            return Spectrum::default();
        }
        let wh: Vector3f = self.distribution.sample_wh(wo, u);
        *wi = reflect(wo, &wh);
        if !vec3_same_hemisphere_vec3(wo, &*wi) {
            return Spectrum::default();
        }
        // compute PDF of _wi_ for microfacet reflection
        *pdf = self.distribution.pdf(wo, &wh) / (4.0 * vec3_dot_vec3f(wo, &wh));
        if let Some(sc) = self.sc_opt {
            sc * self.f(wo, &*wi)
        } else {
            self.f(wo, &*wi)
        }
    }

    pub fn pdf(&self, wo: &Vector3f, wi: &Vector3f) -> Float {
        if !vec3_same_hemisphere_vec3(wo, wi) {
            return 0.0 as Float;
        }
        let wh: Vector3f = (*wo + *wi).normalize();
        self.distribution.pdf(wo, &wh) / (4.0 * vec3_dot_vec3f(wo, &wh))
    }

    pub fn get_type(&self) -> u8 {
        BxdfType::BsdfReflection as u8 | BxdfType::BsdfGlossy as u8
    }
}

// MicrofacetTransmission

#[derive(Copy, Clone)]
pub struct MicrofacetTransmission {
    pub t: Spectrum,
    pub distribution: MicrofacetDistribution,
    pub eta_a: Float,
    pub eta_b: Float,
    pub fresnel: FresnelDielectric,
    pub mode: TransportMode,
    pub sc_opt: Option<Spectrum>,
}

impl MicrofacetTransmission {
    pub fn new(
        t: Spectrum,
        distribution: MicrofacetDistribution,
        eta_a: Float,
        eta_b: Float,
        mode: TransportMode,
        sc_opt: Option<Spectrum>,
    ) -> Self {
        MicrofacetTransmission {
            t,
            distribution,
            eta_a,
            eta_b,
            fresnel: FresnelDielectric {
                eta_i: eta_a,
                eta_t: eta_b,
            },
            mode,
            sc_opt,
        }
    }
    pub fn f(&self, wo: &Vector3f, wi: &Vector3f) -> Spectrum {
        if vec3_same_hemisphere_vec3(wo, wi) {
            // transmission only
            return Spectrum::zero();
        }

        let cos_theta_o = cos_theta(wo);
        let cos_theta_i = cos_theta(wi);
        // Handle degenerate case for microfacet reflection
        if cos_theta_o == 0.0 || cos_theta_i == 0.0 {
            return Spectrum::zero();
        }

        let eta = if cos_theta_o > 0.0 {
            self.eta_b / self.eta_a
        } else {
            self.eta_a / self.eta_b
        };

        let mut wh: Vector3f = (*wo + *wi * eta).normalize();
        if wh.z < 0.0 {
            wh = -wh;
        }

        // Same side?
        if vec3_dot_vec3f(wo, &wh) * vec3_dot_vec3f(wi, &wh) > 0.0 as Float {
            return Spectrum::zero();
        }

        let f = self.fresnel.evaluate(vec3_dot_vec3f(wo, &wh));

        let sqrt_denom = vec3_dot_vec3f(wo, &wh) + eta * vec3_dot_vec3f(wi, &wh);
        let factor = match self.mode {
            TransportMode::Radiance => 1.0 / eta,
            _ => 1.0,
        };

        if let Some(sc) = self.sc_opt {
            sc * (Spectrum::new(1.0) - f)
                * self.t
                * Float::abs(
                    self.distribution.d(&wh)
                        * self.distribution.g(wo, wi)
                        * eta
                        * eta
                        * vec3_abs_dot_vec3f(wi, &wh)
                        * vec3_abs_dot_vec3f(wo, &wh)
                        * factor
                        * factor
                        / (cos_theta_i * cos_theta_o * sqrt_denom * sqrt_denom),
                )
        } else {
            (Spectrum::new(1.0) - f)
                * self.t
                * Float::abs(
                    self.distribution.d(&wh)
                        * self.distribution.g(wo, wi)
                        * eta
                        * eta
                        * vec3_abs_dot_vec3f(wi, &wh)
                        * vec3_abs_dot_vec3f(wo, &wh)
                        * factor
                        * factor
                        / (cos_theta_i * cos_theta_o * sqrt_denom * sqrt_denom),
                )
        }
    }
    pub fn get_type(&self) -> u8 {
        BxdfType::BsdfTransmission as u8 | BxdfType::BsdfGlossy as u8
    }
    /// Override sample_f() to use a better importance sampling method than weighted cosine based
    /// on the microface distribution
    pub fn sample_f(
        &self,
        wo: &Vector3f,
        wi: &mut Vector3f,
        u: &Point2f,
        pdf: &mut Float,
        _sampled_type: &mut u8,
    ) -> Spectrum {
        if wo.z == 0.0 {
            return Spectrum::zero();
        }

        let wh: Vector3f = self.distribution.sample_wh(wo, u);
        let eta = if cos_theta(wo) > 0.0 {
            self.eta_a / self.eta_b
        } else {
            self.eta_b / self.eta_a
        };

        if refract(wo, &wh.into(), eta, wi) {
            *pdf = self.pdf(wo, &wi);
            if let Some(sc) = self.sc_opt {
                sc * self.f(wo, wi)
            } else {
                self.f(wo, wi)
            }
        } else {
            Spectrum::zero()
        }
    }
    pub fn pdf(&self, wo: &Vector3f, wi: &Vector3f) -> Float {
        if vec3_same_hemisphere_vec3(wo, wi) {
            return 0.0;
        }

        let eta = if cos_theta(wo) > 0.0 {
            self.eta_b / self.eta_a
        } else {
            self.eta_a / self.eta_b
        };
        let wh: Vector3f = (*wo + *wi * eta).normalize();

        let wo_dot_wh = vec3_dot_vec3f(wo, &wh);
        let wi_dot_wh = vec3_dot_vec3f(wi, &wh);
        if wo_dot_wh * wi_dot_wh > 0.0 as Float {
            return 0.0 as Float;
        }

        let sqrt_denom = wo_dot_wh + eta * wi_dot_wh;
        let dwh_dwi = ((eta * eta * wi_dot_wh) / (sqrt_denom * sqrt_denom)).abs();

        self.distribution.pdf(wo, &wh) * dwh_dwi
    }
}

#[derive(Copy, Clone)]
pub struct FresnelBlend {
    pub rd: Spectrum,
    pub rs: Spectrum,
    pub distribution: Option<MicrofacetDistribution>,
    pub sc_opt: Option<Spectrum>,
}

impl FresnelBlend {
    pub fn new(
        rd: Spectrum,
        rs: Spectrum,
        distribution: Option<MicrofacetDistribution>,
        sc_opt: Option<Spectrum>,
    ) -> Self {
        FresnelBlend {
            rd,
            rs,
            distribution,
            sc_opt,
        }
    }
    pub fn schlick_fresnel(&self, cos_theta: Float) -> Spectrum {
        self.rs + (Spectrum::new(1.0) - self.rs) * pow5(1.0 - cos_theta)
    }
    pub fn f(&self, wo: &Vector3f, wi: &Vector3f) -> Spectrum {
        let diffuse: Spectrum = self.rd
            * (Spectrum::new(1.0 as Float) - self.rs)
            * (28.0 as Float / (23.0 as Float * PI))
            * (1.0 - pow5(1.0 - 0.5 * abs_cos_theta(wi)))
            * (1.0 - pow5(1.0 - 0.5 * abs_cos_theta(wo)));
        let mut wh: Vector3f = *wi + *wo;
        if wh.x == 0.0 && wh.y == 0.0 && wh.z == 0.0 {
            return Spectrum::new(0.0 as Float);
        }
        wh = wh.normalize();
        if let Some(ref distribution) = self.distribution {
            let schlick_fresnel: Spectrum = self.schlick_fresnel(vec3_dot_vec3f(wi, &wh));
            assert!(schlick_fresnel.c[0] >= 0.0, "wi = {:?}; wh = {:?}", wi, wh);
            let specular: Spectrum = schlick_fresnel
                * (distribution.d(&wh)
                    / (4.0
                        * vec3_dot_vec3f(wi, &wh).abs()
                        * f32::max(abs_cos_theta(wi), abs_cos_theta(wo))));
            if let Some(sc) = self.sc_opt {
                sc * (diffuse + specular)
            } else {
                diffuse + specular
            }
        } else if let Some(sc) = self.sc_opt {
            sc * diffuse
        } else {
            diffuse
        }
    }
    pub fn sample_f(
        &self,
        wo: &Vector3f,
        wi: &mut Vector3f,
        u_orig: &Point2f,
        pdf: &mut Float,
        _sampled_type: &mut u8,
    ) -> Spectrum {
        let mut u: Point2f = *u_orig;
        if u[XYEnum::X] < 0.5 as Float {
            u[XYEnum::X] = Float::min(2.0 * u[XYEnum::X], FLOAT_ONE_MINUS_EPSILON);
            // cosine-sample the hemisphere, flipping the direction if necessary
            *wi = cosine_sample_hemisphere(&u);
            if wo.z < 0.0 as Float {
                wi.z *= -1.0 as Float;
            }
        } else {
            u[XYEnum::X] = Float::min(2.0 * (u[XYEnum::X] - 0.5 as Float), FLOAT_ONE_MINUS_EPSILON);
            // sample microfacet orientation $\wh$ and reflected direction $\wi$
            if let Some(ref distribution) = self.distribution {
                let wh: Vector3f = distribution.sample_wh(wo, &u);
                *wi = reflect(wo, &wh);
                if !vec3_same_hemisphere_vec3(wo, &*wi) {
                    return Spectrum::new(0.0);
                }
            }
        }
        *pdf = self.pdf(wo, &*wi);
        if let Some(sc) = self.sc_opt {
            sc * self.f(wo, &*wi)
        } else {
            self.f(wo, &*wi)
        }
    }
    pub fn pdf(&self, wo: &Vector3f, wi: &Vector3f) -> Float {
        // if (!SameHemisphere(wo, wi)) return 0;
        if !vec3_same_hemisphere_vec3(wo, wi) {
            return 0.0 as Float;
        }
        let wh: Vector3f = (*wo + *wi).normalize();
        if let Some(ref distribution) = self.distribution {
            let pdf_wh: Float = distribution.pdf(wo, &wh);
            0.5 as Float * (abs_cos_theta(wi) * INV_PI + pdf_wh / (4.0 * vec3_dot_vec3f(wo, &wh)))
        } else {
            0.0 as Float
        }
    }
    pub fn get_type(&self) -> u8 {
        BxdfType::BsdfReflection as u8 | BxdfType::BsdfGlossy as u8
    }
}

pub struct FourierBSDF {
    pub bsdf_table: Arc<FourierBSDFTable>,
    pub mode: TransportMode,
    pub sc_opt: Option<Spectrum>,
}

impl FourierBSDF {
    pub fn new(
        bsdf_table: Arc<FourierBSDFTable>,
        mode: TransportMode,
        sc_opt: Option<Spectrum>,
    ) -> Self {
        FourierBSDF {
            bsdf_table,
            mode,
            sc_opt,
        }
    }
    pub fn f(&self, wo: &Vector3f, wi: &Vector3f) -> Spectrum {
        // find the zenith angle cosines and azimuth difference angle
        let mu_i: Float = cos_theta(&-(*wi));
        let mu_o: Float = cos_theta(wo);
        let cos_phi: Float = cos_d_phi(&-(*wi), wo);
        // compute Fourier coefficients

        // determine offsets and weights
        let mut offset_i: i32 = 0;
        let mut offset_o: i32 = 0;
        let mut weights_i: [Float; 4] = [0.0 as Float; 4];
        let mut weights_o: [Float; 4] = [0.0 as Float; 4];
        if !self
            .bsdf_table
            .get_weights_and_offset(mu_i, &mut offset_i, &mut weights_i)
            || !self
                .bsdf_table
                .get_weights_and_offset(mu_o, &mut offset_o, &mut weights_o)
        {
            return Spectrum::default();
        }
        // allocate storage to accumulate _ak_ coefficients
        let mut ak: SmallVec<[Float; 128]> =
            SmallVec::with_capacity((self.bsdf_table.m_max * self.bsdf_table.n_channels) as usize);
        for _i in 0..(self.bsdf_table.m_max * self.bsdf_table.n_channels) as usize {
            ak.push(0.0 as Float); // initialize with 0
        }
        // accumulate weighted sums of nearby $a_k$ coefficients
        let mut m_max: i32 = 0;
        for (b, weight_o) in weights_o.iter().enumerate() {
            for (a, weight_i) in weights_i.iter().enumerate() {
                // add contribution of _(a, b)_ to $a_k$ values
                let weight: Float = weight_i * weight_o;
                if weight != 0.0 as Float {
                    let mut m: i32 = 0;
                    let a_idx: i32 =
                        self.bsdf_table
                            .get_ak(offset_i + a as i32, offset_o + b as i32, &mut m);
                    m_max = std::cmp::max(m_max, m);
                    for c in 0..self.bsdf_table.n_channels as usize {
                        for k in 0..m as usize {
                            ak[c * self.bsdf_table.m_max as usize + k] += weight
                                * self.bsdf_table.a[(a_idx + c as i32 * m + k as i32) as usize];
                        }
                    }
                }
            }
        }
        // evaluate Fourier expansion for angle $\phi$
        let y: Float = (0.0 as Float).max(fourier(&ak, 0_usize, m_max, cos_phi as f64));
        let mut scale = if mu_i != 0.0 as Float {
            1.0 as Float / mu_i.abs()
        } else {
            0.0 as Float
        };
        // update _scale_ to account for adjoint light transport
        if self.mode == TransportMode::Radiance && (mu_i * mu_o) > 0.0 as Float {
            let eta = if mu_i > 0.0 as Float {
                1.0 as Float / self.bsdf_table.eta
            } else {
                self.bsdf_table.eta
            };
            scale *= eta * eta;
        }
        if self.bsdf_table.n_channels == 1_i32 {
            if let Some(sc) = self.sc_opt {
                sc * Spectrum::new(y * scale)
            } else {
                Spectrum::new(y * scale)
            }
        } else {
            // compute and return RGB colors for tabulated BSDF
            let r: Float = fourier(&ak, self.bsdf_table.m_max as usize, m_max, cos_phi as f64);
            let b: Float = fourier(
                &ak,
                (2_i32 * self.bsdf_table.m_max) as usize,
                m_max,
                cos_phi as f64,
            );
            let g: Float = 1.398_29 as Float * y - 0.100_913 as Float * b - 0.297_375 as Float * r;
            let rgb: [Float; 3] = [r * scale, g * scale, b * scale];
            if let Some(sc) = self.sc_opt {
                sc * Spectrum::from_rgb(&rgb).clamp(0.0 as Float, std::f32::INFINITY as Float)
            } else {
                Spectrum::from_rgb(&rgb).clamp(0.0 as Float, std::f32::INFINITY as Float)
            }
        }
    }
    pub fn sample_f(
        &self,
        wo: &Vector3f,
        wi: &mut Vector3f,
        sample: &Point2f,
        pdf: &mut Float,
        _sampled_type: &mut u8,
    ) -> Spectrum {
        // sample zenith angle component for _FourierBSDF_
        let mu_o: Float = cos_theta(wo);
        let mut pdf_mu: Float = 0.0;
        let mu_i: Float = sample_catmull_rom_2d(
            &self.bsdf_table.mu,
            &self.bsdf_table.mu,
            &self.bsdf_table.a0,
            &self.bsdf_table.cdf,
            mu_o,
            sample[XYEnum::Y],
            None,
            Some(&mut pdf_mu),
        );
        // compute Fourier coefficients $a_k$ for $(\mui, \muo)$

        // determine offsets and weights for $\mui$ and $\muo$
        let mut offset_i: i32 = 0;
        let mut offset_o: i32 = 0;
        let mut weights_i: [Float; 4] = [0.0 as Float; 4];
        let mut weights_o: [Float; 4] = [0.0 as Float; 4];
        if !self
            .bsdf_table
            .get_weights_and_offset(mu_i, &mut offset_i, &mut weights_i)
            || !self
                .bsdf_table
                .get_weights_and_offset(mu_o, &mut offset_o, &mut weights_o)
        {
            return Spectrum::default();
        }
        // allocate storage to accumulate _ak_ coefficients
        let mut ak: SmallVec<[Float; 128]> =
            SmallVec::with_capacity((self.bsdf_table.m_max * self.bsdf_table.n_channels) as usize);
        for _i in 0..(self.bsdf_table.m_max * self.bsdf_table.n_channels) as usize {
            ak.push(0.0 as Float); // initialize with 0
        }
        // accumulate weighted sums of nearby $a_k$ coefficients
        let mut m_max: i32 = 0;
        for (b, weight_o) in weights_o.iter().enumerate() {
            for (a, weight_i) in weights_i.iter().enumerate() {
                // add contribution of _(a, b)_ to $a_k$ values
                let weight: Float = weight_i * weight_o;
                if weight != 0.0 as Float {
                    let mut m: i32 = 0;
                    let a_idx =
                        self.bsdf_table
                            .get_ak(offset_i + a as i32, offset_o + b as i32, &mut m);
                    m_max = std::cmp::max(m_max, m);
                    for c in 0..self.bsdf_table.n_channels as usize {
                        for k in 0..m as usize {
                            ak[c * self.bsdf_table.m_max as usize + k] += weight
                                * self.bsdf_table.a[(a_idx + c as i32 * m + k as i32) as usize];
                        }
                    }
                }
            }
        }
        // importance sample the luminance Fourier expansion
        let mut phi: Float = 0.0;
        let mut pdf_phi: Float = 0.0;
        let y: Float = sample_fourier(
            &ak,
            &self.bsdf_table.recip,
            m_max,
            sample[XYEnum::X],
            &mut pdf_phi,
            &mut phi,
        );
        *pdf = (0.0 as Float).max(pdf_phi * pdf_mu);
        // compute the scattered direction for _FourierBSDF_
        let sin_2_theta_i: Float = (0.0 as Float).max(1.0 as Float - mu_i * mu_i);
        let mut norm: Float = (sin_2_theta_i / sin_2_theta(wo)).sqrt();
        if norm.is_infinite() {
            norm = 0.0;
        }
        let sin_phi: Float = phi.sin();
        let cos_phi: Float = phi.cos();
        *wi = -Vector3f {
            x: norm * (cos_phi * wo.x - sin_phi * wo.y),
            y: norm * (sin_phi * wo.x + cos_phi * wo.y),
            z: mu_i,
        };
        // Mathematically, wi will be normalized (if wo was). However,
        // in practice, floating-point rounding error can cause some
        // error to accumulate in the computed value of wi here. This
        // can be catastrophic: if the ray intersects an object with
        // the FourierBSDF again and the wo (based on such a wi) is
        // nearly perpendicular to the surface, then the wi computed
        // at the next intersection can end up being substantially
        // (like 4x) longer than normalized, which leads to all sorts
        // of errors, including negative spectral values. Therefore,
        // we normalize again here.
        *wi = wi.normalize();
        // evaluate remaining Fourier expansions for angle $\phi$
        let mut scale = if mu_i != 0.0 as Float {
            1.0 as Float / mu_i.abs()
        } else {
            0.0 as Float
        };
        // update _scale_ to account for adjoint light transport
        if self.mode == TransportMode::Radiance && (mu_i * mu_o) > 0.0 as Float {
            let eta = if mu_i > 0.0 as Float {
                1.0 as Float / self.bsdf_table.eta
            } else {
                self.bsdf_table.eta
            };
            scale *= eta * eta;
        }
        if self.bsdf_table.n_channels == 1_i32 {
            if let Some(sc) = self.sc_opt {
                sc * Spectrum::new(y * scale)
            } else {
                Spectrum::new(y * scale)
            }
        } else {
            // compute and return RGB colors for tabulated BSDF
            let r: Float = fourier(&ak, self.bsdf_table.m_max as usize, m_max, cos_phi as f64);
            let b: Float = fourier(
                &ak,
                (2_i32 * self.bsdf_table.m_max) as usize,
                m_max,
                cos_phi as f64,
            );
            let g: Float = 1.398_29 as Float * y - 0.100_913 as Float * b - 0.297_375 as Float * r;
            let rgb: [Float; 3] = [r * scale, g * scale, b * scale];
            if let Some(sc) = self.sc_opt {
                sc * Spectrum::from_rgb(&rgb).clamp(0.0 as Float, std::f32::INFINITY as Float)
            } else {
                Spectrum::from_rgb(&rgb).clamp(0.0 as Float, std::f32::INFINITY as Float)
            }
        }
    }
    pub fn pdf(&self, wo: &Vector3f, wi: &Vector3f) -> Float {
        // find the zenith angle cosines and azimuth difference angle
        let mu_i: Float = cos_theta(&-(*wi));
        let mu_o: Float = cos_theta(wo);
        let cos_phi: Float = cos_d_phi(&-(*wi), wo);
        // compute luminance Fourier coefficients
        let mut offset_i: i32 = 0;
        let mut offset_o: i32 = 0;
        let mut weights_i: [Float; 4] = [0.0 as Float; 4];
        let mut weights_o: [Float; 4] = [0.0 as Float; 4];
        if !self
            .bsdf_table
            .get_weights_and_offset(mu_i, &mut offset_i, &mut weights_i)
            || !self
                .bsdf_table
                .get_weights_and_offset(mu_o, &mut offset_o, &mut weights_o)
        {
            return 0.0 as Float;
        }
        let mut ak: SmallVec<[Float; 128]> =
            SmallVec::with_capacity(self.bsdf_table.m_max as usize);
        for _i in 0..self.bsdf_table.m_max as usize {
            ak.push(0.0 as Float); // initialize with 0
        }
        let mut m_max: i32 = 0;
        for (o, weight_o) in weights_o.iter().enumerate() {
            for (i, weight_i) in weights_i.iter().enumerate() {
                let weight: Float = weight_i * weight_o;
                if weight == 0.0 as Float {
                    continue;
                }
                let mut order: i32 = 0;
                let a_idx: i32 =
                    self.bsdf_table
                        .get_ak(offset_i + i as i32, offset_o + o as i32, &mut order);
                m_max = std::cmp::max(m_max, order);
                for k in 0..order as usize {
                    ak[k] += weight * self.bsdf_table.a[(a_idx + k as i32) as usize];
                }
            }
        }
        // evaluate probability of sampling _wi_
        let mut rho: Float = 0.0;
        for (o, weight_o) in weights_o.iter().enumerate() {
            if *weight_o == 0.0 as Float {
                continue;
            }
            rho += weight_o
                * self.bsdf_table.cdf[(offset_o as usize + o) * self.bsdf_table.n_mu as usize
                    + self.bsdf_table.n_mu as usize
                    - 1 as usize]
                * (2.0 as Float * PI);
        }
        let y: Float = (0.0 as Float).max(fourier(&ak, 0_usize, m_max, cos_phi as f64));
        if rho > 0.0 as Float && y > 0.0 as Float {
            y / rho
        } else {
            0.0 as Float
        }
    }
    pub fn get_type(&self) -> u8 {
        BxdfType::BsdfReflection as u8
            | BxdfType::BsdfTransmission as u8
            | BxdfType::BsdfGlossy as u8
    }
}

impl Clone for FourierBSDF {
    fn clone(&self) -> FourierBSDF {
        FourierBSDF {
            bsdf_table: self.bsdf_table.clone(),
            mode: self.mode,
            sc_opt: self.sc_opt,
        }
    }
}

/// Utility function to calculate cosine via spherical coordinates.
pub fn cos_theta(w: &Vector3f) -> Float {
    w.z
}

/// Utility function to calculate the square cosine via spherical
/// coordinates.
pub fn cos_2_theta(w: &Vector3f) -> Float {
    w.z * w.z
}

/// Utility function to calculate the absolute value of the cosine via
/// spherical coordinates.
pub fn abs_cos_theta(w: &Vector3f) -> Float {
    w.z.abs()
}

/// Utility function to calculate the square sine via spherical
/// coordinates.
pub fn sin_2_theta(w: &Vector3f) -> Float {
    (0.0 as Float).max(1.0 as Float - cos_2_theta(w))
}

/// Utility function to calculate sine via spherical coordinates.
pub fn sin_theta(w: &Vector3f) -> Float {
    sin_2_theta(w).sqrt()
}

/// Utility function to calculate the tangent via spherical
/// coordinates.
pub fn tan_theta(w: &Vector3f) -> Float {
    sin_theta(w) / cos_theta(w)
}

/// Utility function to calculate the square tangent via spherical
/// coordinates.
pub fn tan_2_theta(w: &Vector3f) -> Float {
    sin_2_theta(w) / cos_2_theta(w)
}

/// Utility function to calculate cosine via spherical coordinates.
pub fn cos_phi(w: &Vector3f) -> Float {
    let sin_theta: Float = sin_theta(w);
    if sin_theta == 0.0 as Float {
        1.0 as Float
    } else {
        clamp_t(w.x / sin_theta, -1.0, 1.0)
    }
}

/// Utility function to calculate sine via spherical coordinates.
pub fn sin_phi(w: &Vector3f) -> Float {
    let sin_theta: Float = sin_theta(w);
    if sin_theta == 0.0 as Float {
        0.0 as Float
    } else {
        clamp_t(w.y / sin_theta, -1.0, 1.0)
    }
}

/// Utility function to calculate square cosine via spherical coordinates.
pub fn cos_2_phi(w: &Vector3f) -> Float {
    cos_phi(w) * cos_phi(w)
}

/// Utility function to calculate square sine via spherical coordinates.
pub fn sin_2_phi(w: &Vector3f) -> Float {
    sin_phi(w) * sin_phi(w)
}

/// Utility function to calculate the cosine of the angle between two
/// vectors in the shading coordinate system.
pub fn cos_d_phi(wa: &Vector3f, wb: &Vector3f) -> Float {
    let waxy: Float = wa.x * wa.x + wa.y * wa.y;
    let wbxy: Float = wb.x * wb.x + wb.y * wb.y;
    if waxy == 0.0 as Float || wbxy == 0.0 as Float {
        1.0 as Float
    } else {
        clamp_t(
            (wa.x * wb.x + wa.y * wb.y) / (waxy * wbxy).sqrt(),
            -1.0 as Float,
            1.0 as Float,
        )
    }
}

/// Computes the reflection direction given an incident direction and
/// a surface normal.
pub fn reflect(wo: &Vector3f, n: &Vector3f) -> Vector3f {
    -(*wo) + *n * 2.0 as Float * vec3_dot_vec3f(wo, n)
}

/// Computes the refraction direction given an incident direction, a
/// surface normal, and the ratio of indices of refraction (incident
/// and transmitted).
pub fn refract(wi: &Vector3f, n: &Normal3f, eta: Float, wt: &mut Vector3f) -> bool {
    // compute $\cos \theta_\roman{t}$ using Snell's law
    let cos_theta_i: Float = nrm_dot_vec3f(n, wi);
    let sin2_theta_i: Float = (0.0 as Float).max(1.0 as Float - cos_theta_i * cos_theta_i);
    let sin2_theta_t: Float = eta * eta * sin2_theta_i;
    // handle total internal reflection for transmission
    if sin2_theta_t >= 1.0 as Float {
        return false;
    }
    let cos_theta_t: Float = (1.0 as Float - sin2_theta_t).sqrt();
    *wt = -(*wi) * eta + Vector3f::from(*n) * (eta * cos_theta_i - cos_theta_t);
    true
}

/// Check that two vectors lie on the same side of of the surface.
pub fn vec3_same_hemisphere_vec3(w: &Vector3f, wp: &Vector3f) -> bool {
    w.z * wp.z > 0.0 as Float
}

// see reflection.cpp

/// Computes the Fresnel reflection formula for dielectric materials
/// and unpolarized light.
pub fn fr_dielectric(cos_theta_i: Float, eta_i: Float, eta_t: Float) -> Float {
    let mut cos_theta_i = clamp_t(cos_theta_i, -1.0, 1.0);
    // potentially swap indices of refraction
    let entering: bool = cos_theta_i > 0.0;
    // use local copies because of potential swap (otherwise eta_i and
    // eta_t would have to be mutable)
    let mut local_eta_i = eta_i;
    let mut local_eta_t = eta_t;
    if !entering {
        std::mem::swap(&mut local_eta_i, &mut local_eta_t);
        cos_theta_i = cos_theta_i.abs();
    }
    // compute _cos_theta_t_ using Snell's law
    let sin_theta_i: Float = (0.0 as Float)
        .max(1.0 as Float - cos_theta_i * cos_theta_i)
        .sqrt();
    let sin_theta_t: Float = local_eta_i / local_eta_t * sin_theta_i;
    // handle total internal reflection
    if sin_theta_t >= 1.0 as Float {
        return 1.0 as Float;
    }
    let cos_theta_t: Float = (0.0 as Float)
        .max(1.0 as Float - sin_theta_t * sin_theta_t)
        .sqrt();
    let r_parl: Float = ((local_eta_t * cos_theta_i) - (local_eta_i * cos_theta_t))
        / ((local_eta_t * cos_theta_i) + (local_eta_i * cos_theta_t));
    let r_perp: Float = ((local_eta_i * cos_theta_i) - (local_eta_t * cos_theta_t))
        / ((local_eta_i * cos_theta_i) + (local_eta_t * cos_theta_t));
    (r_parl * r_parl + r_perp * r_perp) / 2.0
}

/// Computes the Fresnel reflectance at the boundary between a
/// conductor and a dielectric medium.
pub fn fr_conductor(cos_theta_i: Float, eta_i: Spectrum, eta_t: Spectrum, k: Spectrum) -> Spectrum {
    let not_clamped: Float = cos_theta_i;
    let cos_theta_i: Float = clamp_t(not_clamped, -1.0, 1.0);
    let eta: Spectrum = eta_t / eta_i;
    let eta_k: Spectrum = k / eta_i;
    let cos_theta_i2: Float = cos_theta_i * cos_theta_i;
    let sin_theta_i2: Float = 1.0 as Float - cos_theta_i2;
    let eta_2: Spectrum = eta * eta;
    let eta_k2: Spectrum = eta_k * eta_k;
    let t0: Spectrum = eta_2 - eta_k2 - Spectrum::new(sin_theta_i2);
    let a2_plus_b2: Spectrum = (t0 * t0 + eta_2 * eta_k2 * Spectrum::new(4.0 as Float)).sqrt();
    let t1: Spectrum = a2_plus_b2 + Spectrum::new(cos_theta_i2);
    let a: Spectrum = ((a2_plus_b2 + t0) * 0.5 as Float).sqrt();
    let t2: Spectrum = a * 2.0 as Float * cos_theta_i;
    let rs: Spectrum = (t1 - t2) / (t1 + t2);
    let t3: Spectrum = a2_plus_b2 * cos_theta_i2 + Spectrum::new(sin_theta_i2 * sin_theta_i2);
    let t4: Spectrum = t2 * sin_theta_i2;
    let rp: Spectrum = rs * (t3 - t4) / (t3 + t4);
    (rp + rs) * Spectrum::new(0.5 as Float)
}

fn pow5(v: Float) -> Float {
    (v * v) * (v * v) * v
}