1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
// std
use std::borrow::Borrow;
use std::cell::Cell;
use std::sync::Arc;
// pbrt
// use crate::core::bssrdf::Bssrdf;
use crate::core::camera::Camera;
use crate::core::geometry::{vec3_abs_dot_nrmf, vec3_dot_nrmf};
use crate::core::geometry::{Bounds2i, Point2f, Ray, Vector3f};
use crate::core::integrator::uniform_sample_one_light;
use crate::core::interaction::{Interaction, SurfaceInteraction};
use crate::core::lightdistrib::create_light_sample_distribution;
use crate::core::lightdistrib::LightDistribution;
use crate::core::material::TransportMode;
use crate::core::pbrt::{Float, Spectrum};
use crate::core::reflection::BxdfType;
use crate::core::sampler::Sampler;
use crate::core::sampling::Distribution1D;
use crate::core::scene::Scene;
// see path.h
/// Path Tracing (Global Illumination) - uses the render loop of a
/// [SamplerIntegrator](../../core/integrator/enum.SamplerIntegrator.html)
pub struct PathIntegrator {
// inherited from SamplerIntegrator (see integrator.h)
pub camera: Arc<Camera>,
pub sampler: Box<Sampler>,
pixel_bounds: Bounds2i,
// see path.h
max_depth: u32,
rr_threshold: Float, // 1.0
light_sample_strategy: String, // "spatial"
light_distribution: Option<Arc<LightDistribution>>,
}
impl PathIntegrator {
pub fn new(
max_depth: u32,
camera: Arc<Camera>,
sampler: Box<Sampler>,
pixel_bounds: Bounds2i,
rr_threshold: Float,
light_sample_strategy: String,
) -> Self {
PathIntegrator {
camera,
sampler,
pixel_bounds,
max_depth,
rr_threshold,
light_sample_strategy,
light_distribution: None,
}
}
pub fn preprocess(&mut self, scene: &Scene) {
self.light_distribution =
create_light_sample_distribution(self.light_sample_strategy.clone(), scene);
}
pub fn li(
&self,
r: &Ray,
scene: &Scene,
sampler: &mut Sampler,
// arena: &mut Arena,
_depth: i32,
) -> Spectrum {
// TODO: ProfilePhase p(Prof::SamplerIntegratorLi);
let mut l: Spectrum = Spectrum::default();
let mut beta: Spectrum = Spectrum::new(1.0 as Float);
let mut ray: Ray = Ray {
o: r.o,
d: r.d,
t_max: Cell::new(r.t_max.get()),
time: r.time,
differential: r.differential,
medium: r.medium.clone(),
};
let mut specular_bounce: bool = false;
let mut bounces: u32 = 0_u32;
// Added after book publication: etaScale tracks the
// accumulated effect of radiance scaling due to rays passing
// through refractive boundaries (see the derivation on p. 527
// of the third edition). We track this value in order to
// remove it from beta when we apply Russian roulette; this is
// worthwhile, since it lets us sometimes avoid terminating
// refracted rays that are about to be refracted back out of a
// medium and thus have their beta value increased.
let mut eta_scale: Float = 1.0;
loop {
// find next path vertex and accumulate contribution
// println!("Path tracer bounce {:?}, current L = {:?}, beta = {:?}",
// bounces, l, beta);
// intersect _ray_ with scene and store intersection in _isect_
let mut isect: SurfaceInteraction = SurfaceInteraction::default();
if scene.intersect(&ray, &mut isect) {
// possibly add emitted light at intersection
if bounces == 0 || specular_bounce {
// add emitted light at path vertex
l += beta * isect.le(&-ray.d);
// println!("Added Le -> L = {:?}", l);
}
// terminate path if _maxDepth_ was reached
if bounces >= self.max_depth {
break;
}
// compute scattering functions and skip over medium boundaries
let mode: TransportMode = TransportMode::Radiance;
isect.compute_scattering_functions(&ray, true, mode);
if let Some(ref _bsdf) = isect.bsdf {
// we are fine (for below)
} else {
// TODO: println!("Skipping intersection due to null bsdf");
ray = isect.spawn_ray(&ray.d);
// bounces--;
continue;
}
if let Some(ref light_distribution) = self.light_distribution {
let distrib: Arc<Distribution1D> = light_distribution.lookup(&isect.common.p);
// Sample illumination from lights to find path contribution.
// (But skip this for perfectly specular BSDFs.)
let bsdf_flags: u8 = BxdfType::BsdfAll as u8 & !(BxdfType::BsdfSpecular as u8);
if let Some(ref bsdf) = isect.bsdf {
if bsdf.num_components(bsdf_flags) > 0 {
// TODO: ++total_paths;
let it: &SurfaceInteraction = isect.borrow();
let ld: Spectrum = beta
* uniform_sample_one_light(
it,
scene,
sampler,
false,
Some(&distrib),
);
// TODO: println!("Sampled direct lighting Ld = {:?}", ld);
// TODO: if ld.is_black() {
// ++zero_radiance_paths;
// }
assert!(ld.y() >= 0.0 as Float, "ld = {:?}", ld);
l += ld;
}
// Sample BSDF to get new path direction
let wo: Vector3f = -ray.d;
let mut wi: Vector3f = Vector3f::default();
let mut pdf: Float = 0.0 as Float;
let bsdf_flags: u8 = BxdfType::BsdfAll as u8;
let mut sampled_type: u8 = u8::max_value(); // != 0
let f: Spectrum = bsdf.sample_f(
&wo,
&mut wi,
&sampler.get_2d(),
&mut pdf,
bsdf_flags,
&mut sampled_type,
);
// println!("Sampled BSDF, f = {:?}, pdf = {:?}", f, pdf);
if f.is_black() || pdf == 0.0 as Float {
break;
}
beta *= (f * vec3_abs_dot_nrmf(&wi, &isect.shading.n)) / pdf;
// println!("Updated beta = {:?}", beta);
assert!(beta.y() >= 0.0 as Float);
assert!(
!(beta.y().is_infinite()),
"[{:#?}, {:?}] = ({:#?} * dot({:#?}, {:#?})) / {:?}",
sampler.get_current_pixel(),
sampler.get_current_sample_number(),
f,
wi,
isect.shading.n,
pdf
);
specular_bounce = (sampled_type & BxdfType::BsdfSpecular as u8) != 0_u8;
if ((sampled_type & BxdfType::BsdfSpecular as u8) != 0_u8)
&& ((sampled_type & BxdfType::BsdfTransmission as u8) != 0_u8)
{
let eta: Float = bsdf.eta;
// Update the term that tracks radiance
// scaling for refraction depending on
// whether the ray is entering or leaving
// the medium.
if vec3_dot_nrmf(&wo, &isect.common.n) > 0.0 as Float {
eta_scale *= eta * eta;
} else {
eta_scale *= 1.0 as Float / (eta * eta);
}
}
ray = isect.spawn_ray(&wi);
// account for subsurface scattering, if applicable
if let Some(ref bssrdf) = isect.bssrdf {
if (sampled_type & BxdfType::BsdfTransmission as u8) != 0_u8 {
// importance sample the BSSRDF
let s2: Point2f = sampler.get_2d();
let s1: Float = sampler.get_1d();
let (s, pi_opt) = bssrdf.sample_s(
// the next three (extra) parameters are used for SeparableBssrdfAdapter
bssrdf.clone(),
bssrdf.mode,
bssrdf.eta,
// done
scene,
s1,
s2,
&mut pdf,
);
if s.is_black() || pdf == 0.0 as Float {
break;
}
assert!(!(beta.y().is_infinite()));
beta *= s / pdf;
if let Some(pi) = pi_opt {
// account for the direct subsurface scattering component
let distrib: Arc<Distribution1D> =
light_distribution.lookup(&pi.common.p);
l += beta
* uniform_sample_one_light(
&pi,
scene,
sampler,
false,
Some(&distrib),
);
// account for the indirect subsurface scattering component
let mut wi: Vector3f = Vector3f::default();
let mut pdf: Float = 0.0 as Float;
let bsdf_flags: u8 = BxdfType::BsdfAll as u8;
let mut sampled_type: u8 = u8::max_value(); // != 0
if let Some(ref bsdf) = pi.bsdf {
let f: Spectrum = bsdf.sample_f(
&pi.common.wo,
&mut wi,
&sampler.get_2d(),
&mut pdf,
bsdf_flags,
&mut sampled_type,
);
if f.is_black() || pdf == 0.0 as Float {
break;
}
beta *= f * vec3_abs_dot_nrmf(&wi, &pi.shading.n) / pdf;
assert!(!(beta.y().is_infinite()));
specular_bounce =
(sampled_type & BxdfType::BsdfSpecular as u8) != 0_u8;
ray = pi.spawn_ray(&wi);
}
}
}
}
// Possibly terminate the path with Russian roulette.
// Factor out radiance scaling due to refraction in rr_beta.
let rr_beta: Spectrum = beta * eta_scale;
if rr_beta.max_component_value() < self.rr_threshold && bounces > 3 {
let q: Float =
(0.05 as Float).max(1.0 as Float - rr_beta.max_component_value());
if sampler.get_1d() < q {
break;
}
beta /= 1.0 as Float - q;
assert!(!(beta.y().is_infinite()));
}
} else {
println!("TODO: if let Some(ref bsdf) = isect.bsdf failed");
}
}
} else {
// add emitted light from the environment
if bounces == 0 || specular_bounce {
// for (const auto &light : scene.infiniteLights)
for light in &scene.infinite_lights {
l += beta * light.le(&ray);
}
// println!("Added infinite area lights -> L = {:?}", l);
}
// terminate path if ray escaped
break;
}
bounces += 1_u32;
}
l
}
pub fn get_camera(&self) -> Arc<Camera> {
self.camera.clone()
}
pub fn get_sampler(&self) -> &Sampler {
&self.sampler
}
pub fn get_pixel_bounds(&self) -> Bounds2i {
self.pixel_bounds
}
}