1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// std
use std::sync::atomic::{AtomicI32, AtomicU64, Ordering};
// others
use strum::IntoEnumIterator;
// pbrt
use crate::core::geometry::{Bounds2i, Point2f, Point2i, Vector2i, XYEnum};
use crate::core::lowdiscrepancy::{
    compute_radical_inverse_permutations, inverse_radical_inverse, radical_inverse,
    scrambled_radical_inverse,
};
use crate::core::lowdiscrepancy::{PRIME_SUMS, PRIME_TABLE_SIZE};
use crate::core::paramset::ParamSet;
use crate::core::pbrt::mod_t;
use crate::core::pbrt::Float;
use crate::core::rng::Rng;
use crate::core::sampler::Sampler;

// Generate random digit permutations for Halton sampler
lazy_static::lazy_static! {
    #[derive(Debug)]
    static ref RADICAL_INVERSE_PERMUTATIONS: Vec<u16> = {
        let mut rng: Rng = Rng::new();
        let radical_inverse_permutations: Vec<u16> = compute_radical_inverse_permutations(&mut rng);
        radical_inverse_permutations
    };
}

// see halton.h

pub const K_MAX_RESOLUTION: i32 = 128_i32;

fn multiplicative_inverse(a: i64, n: i64) -> u64 {
    let mut x: i64 = 0;
    let mut y: i64 = 0;
    extended_gcd(a as u64, n as u64, &mut x, &mut y);
    mod_t(x, n) as u64
}

fn extended_gcd(a: u64, b: u64, x: &mut i64, y: &mut i64) {
    if b == 0_u64 {
        *x = 1_i64;
        *y = 0_i64;
    } else {
        let d: i64 = a as i64 / b as i64;
        let mut xp: i64 = 0;
        let mut yp: i64 = 0;
        extended_gcd(b, a % b, &mut xp, &mut yp);
        *x = yp;
        *y = xp - (d * yp);
    }
}

pub struct HaltonSampler {
    pub samples_per_pixel: i64,
    base_scales: Point2i,
    base_exponents: Point2i,
    sample_stride: u64,
    mult_inverse: [i64; 2],
    pixel_for_offset_x: AtomicI32,
    pixel_for_offset_y: AtomicI32,
    offset_for_current_pixel: AtomicU64,
    sample_at_pixel_center: bool, // default: false
    // inherited from class GlobalSampler (see sampler.h)
    dimension: i64,
    interval_sample_index: u64,
    array_start_dim: i64,
    array_end_dim: i64,
    // inherited from class Sampler (see sampler.h)
    current_pixel: Point2i,
    current_pixel_sample_index: i64,
    samples_1d_array_sizes: Vec<i32>,
    samples_2d_array_sizes: Vec<i32>,
    sample_array_1d: Vec<Vec<Float>>,
    sample_array_2d: Vec<Vec<Point2f>>,
    array_1d_offset: usize,
    array_2d_offset: usize,
}

impl HaltonSampler {
    pub fn new(
        samples_per_pixel: i64,
        sample_bounds: &Bounds2i,
        sample_at_pixel_center: bool,
    ) -> Self {
        // find radical inverse base scales and exponents that cover sampling area
        let res: Vector2i = sample_bounds.p_max - sample_bounds.p_min;
        let mut base_scales: Point2i = Point2i::default();
        let mut base_exponents: Point2i = Point2i::default();
        for i in XYEnum::iter() {
            let base = if (i as u8) == 0 { 2 } else { 3 };
            let mut scale: i32 = 1_i32;
            let mut exp: i32 = 0_i32;
            while scale < res[i].min(K_MAX_RESOLUTION) {
                scale *= base;
                exp += 1;
            }
            base_scales[i] = scale;
            base_exponents[i] = exp;
        }
        // compute stride in samples for visiting each pixel area
        let sample_stride: u64 = base_scales[XYEnum::X] as u64 * base_scales[XYEnum::Y] as u64;
        // compute multiplicative inverses for _baseScales_
        let mult_inverse: [i64; 2] = [
            multiplicative_inverse(base_scales[XYEnum::Y] as i64, base_scales[XYEnum::X] as i64)
                as i64,
            multiplicative_inverse(base_scales[XYEnum::X] as i64, base_scales[XYEnum::Y] as i64)
                as i64,
        ];
        HaltonSampler {
            samples_per_pixel,
            base_scales,
            base_exponents,
            sample_stride,
            mult_inverse,
            pixel_for_offset_x: AtomicI32::new(0_i32),
            pixel_for_offset_y: AtomicI32::new(0_i32),
            offset_for_current_pixel: AtomicU64::new(0_u64),
            sample_at_pixel_center,
            dimension: 0_i64,
            interval_sample_index: 0_u64,
            array_start_dim: 5_i64, // static const int arrayStartDim = 5;
            array_end_dim: 0_i64,
            current_pixel: Point2i::default(),
            current_pixel_sample_index: 0_i64,
            samples_1d_array_sizes: Vec::new(),
            samples_2d_array_sizes: Vec::new(),
            sample_array_1d: Vec::new(),
            sample_array_2d: Vec::new(),
            array_1d_offset: 0_usize,
            array_2d_offset: 0_usize,
        }
    }
    pub fn clone_with_seed(&self, _seed: u64) -> Box<Sampler> {
        let pixel_for_offset_x: i32 = self.pixel_for_offset_x.load(Ordering::Relaxed);
        let pixel_for_offset_y: i32 = self.pixel_for_offset_y.load(Ordering::Relaxed);
        let offset_for_current_pixel: u64 = self.offset_for_current_pixel.load(Ordering::Relaxed);
        let halton_sampler = HaltonSampler {
            samples_per_pixel: self.samples_per_pixel,
            base_scales: self.base_scales,
            base_exponents: self.base_exponents,
            sample_stride: self.sample_stride,
            mult_inverse: self.mult_inverse,
            pixel_for_offset_x: AtomicI32::new(pixel_for_offset_x),
            pixel_for_offset_y: AtomicI32::new(pixel_for_offset_y),
            offset_for_current_pixel: AtomicU64::new(offset_for_current_pixel),
            sample_at_pixel_center: self.sample_at_pixel_center,
            dimension: self.dimension,
            interval_sample_index: self.interval_sample_index,
            array_start_dim: self.array_start_dim,
            array_end_dim: self.array_end_dim,
            current_pixel: self.current_pixel,
            current_pixel_sample_index: self.current_pixel_sample_index,
            samples_1d_array_sizes: self.samples_1d_array_sizes.to_vec(),
            samples_2d_array_sizes: self.samples_2d_array_sizes.to_vec(),
            sample_array_1d: self.sample_array_1d.to_vec(),
            sample_array_2d: self.sample_array_2d.to_vec(),
            array_1d_offset: self.array_1d_offset,
            array_2d_offset: self.array_2d_offset,
        };
        let sampler = Sampler::Halton(halton_sampler);
        Box::new(sampler)
    }
    pub fn create(params: &ParamSet, sample_bounds: &Bounds2i) -> Box<Sampler> {
        let nsamp: i32 = params.find_one_int("pixelsamples", 16);
        // TODO: if (PbrtOptions.quickRender) nsamp = 1;
        let sample_at_center: bool = params.find_one_bool("samplepixelcenter", false);
        Box::new(Sampler::Halton(HaltonSampler::new(
            nsamp as i64,
            sample_bounds,
            sample_at_center,
        )))
    }
    pub fn get_index_for_sample(&self, sample_num: u64) -> u64 {
        let pixel_for_offset_x: i32 = self.pixel_for_offset_x.load(Ordering::Relaxed);
        let pixel_for_offset_y: i32 = self.pixel_for_offset_y.load(Ordering::Relaxed);
        if self.current_pixel[XYEnum::X] != pixel_for_offset_x
            || self.current_pixel[XYEnum::Y] != pixel_for_offset_y
        {
            // compute Halton sample offset for _self.current_pixel_
            self.offset_for_current_pixel
                .store(0_u64, Ordering::Relaxed);
            if self.sample_stride > 1_u64 {
                let pm: Point2i = Point2i {
                    x: mod_t(self.current_pixel[XYEnum::X], K_MAX_RESOLUTION),
                    y: mod_t(self.current_pixel[XYEnum::Y], K_MAX_RESOLUTION),
                };
                for i in XYEnum::iter() {
                    let dim_offset = if (i as u8) == 0 {
                        inverse_radical_inverse(2, pm[i] as u64, self.base_exponents[i] as u64)
                    } else {
                        inverse_radical_inverse(3, pm[i] as u64, self.base_exponents[i] as u64)
                    };
                    self.offset_for_current_pixel.fetch_add(
                        dim_offset
                            * (self.sample_stride / self.base_scales[i] as u64) as u64
                            * self.mult_inverse[i as usize] as u64,
                        Ordering::SeqCst,
                    );
                }
                let offset_for_current_pixel: u64 =
                    self.offset_for_current_pixel.load(Ordering::Relaxed);
                self.offset_for_current_pixel.store(
                    offset_for_current_pixel % self.sample_stride as u64,
                    Ordering::Relaxed,
                );
            }
            self.pixel_for_offset_x
                .store(self.current_pixel[XYEnum::X], Ordering::Relaxed);
            self.pixel_for_offset_y
                .store(self.current_pixel[XYEnum::Y], Ordering::Relaxed);
        }
        let offset_for_current_pixel: u64 = self.offset_for_current_pixel.load(Ordering::Relaxed);
        offset_for_current_pixel + sample_num * self.sample_stride
    }
    pub fn sample_dimension(&self, index: u64, dim: i64) -> Float {
        if self.sample_at_pixel_center && (dim == 0 || dim == 1) {
            return 0.5 as Float;
        }
        if dim == 0 {
            radical_inverse(dim as u16, index >> self.base_exponents[XYEnum::X] as u64)
        } else if dim == 1 {
            radical_inverse(dim as u16, index / self.base_scales[XYEnum::Y] as u64)
        } else {
            scrambled_radical_inverse(dim as u16, index, self.permutation_for_dimension(dim))
        }
    }
    fn permutation_for_dimension(&self, dim: i64) -> &[u16] {
        if dim >= PRIME_TABLE_SIZE as i64 {
            panic!(
                "FATAL: HaltonSampler can only sample {:?} dimensions (dim = {}).",
                PRIME_TABLE_SIZE, dim
            );
        }
        &RADICAL_INVERSE_PERMUTATIONS[PRIME_SUMS[dim as usize] as usize..]
    }
    // Sampler
    pub fn start_pixel(&mut self, p: Point2i) {
        // TODO: ProfilePhase _(Prof::StartPixel);
        // Sampler::StartPixel(p);
        self.current_pixel = p;
        self.current_pixel_sample_index = 0_i64;
        self.array_1d_offset = 0_usize;
        self.array_2d_offset = 0_usize;
        // GlobalSampler::StartPixel(p);
        self.dimension = 0_i64;
        self.interval_sample_index = self.get_index_for_sample(0_u64);
        // compute _self.array_end_dim_ for dimensions used for array samples
        self.array_end_dim = self.array_start_dim
            + self.sample_array_1d.len() as i64
            + 2_i64 * self.sample_array_2d.len() as i64;
        // compute 1D array samples for _GlobalSampler_
        for i in 0..self.samples_1d_array_sizes.len() {
            let n_samples = self.samples_1d_array_sizes[i] * self.samples_per_pixel as i32;
            for j in 0..n_samples {
                let index: u64 = self.get_index_for_sample(j as u64);
                self.sample_array_1d[i as usize][j as usize] =
                    self.sample_dimension(index, self.array_start_dim + i as i64);
            }
        }
        // compute 2D array samples for _GlobalSampler_
        let mut dim: i64 = self.array_start_dim + self.samples_1d_array_sizes.len() as i64;
        for i in 0..self.samples_2d_array_sizes.len() {
            let n_samples: usize =
                self.samples_2d_array_sizes[i] as usize * self.samples_per_pixel as usize;
            for j in 0..n_samples {
                let idx: u64 = self.get_index_for_sample(j as u64);
                let x = self.sample_dimension(idx, dim);
                let y = self.sample_dimension(idx, dim + 1_i64);
                self.sample_array_2d[i][j] = Point2f { x, y };
            }
            dim += 2_i64;
        }
        assert!(self.array_end_dim == dim);
    }
    pub fn get_1d(&mut self) -> Float {
        // TODO: ProfilePhase _(Prof::GetSample);
        if self.dimension >= self.array_start_dim && self.dimension < self.array_end_dim {
            self.dimension = self.array_end_dim;
        }
        // call first (in C++: return SampleDimension(intervalSampleIndex, dimension++));
        let ret: Float = self.sample_dimension(self.interval_sample_index, self.dimension);
        self.dimension += 1;
        // then return
        ret
    }
    pub fn get_2d(&mut self) -> Point2f {
        // TODO: ProfilePhase _(Prof::GetSample);
        if self.dimension + 1 >= self.array_start_dim && self.dimension < self.array_end_dim {
            self.dimension = self.array_end_dim;
        }
        // C++: call y first
        let y = self.sample_dimension(self.interval_sample_index, self.dimension + 1);
        let x = self.sample_dimension(self.interval_sample_index, self.dimension);
        let p: Point2f = Point2f { x, y };
        self.dimension += 2;
        p
    }
    pub fn get_2d_sample(&self, array_idx: usize, idx: usize) -> Point2f {
        self.sample_array_2d[array_idx][idx]
    }
    pub fn request_2d_array(&mut self, n: i32) {
        assert_eq!(self.round_count(n), n);
        self.samples_2d_array_sizes.push(n);
        let size: usize = (n * self.samples_per_pixel as i32) as usize;
        let additional_points: Vec<Point2f> = vec![Point2f::default(); size];
        self.sample_array_2d.push(additional_points);
    }
    pub fn round_count(&self, count: i32) -> i32 {
        count
    }
    pub fn get_2d_array(&mut self, n: i32) -> Option<&[Point2f]> {
        if self.array_2d_offset == self.sample_array_2d.len() {
            return None;
        }
        assert_eq!(self.samples_2d_array_sizes[self.array_2d_offset], n);
        assert!(self.current_pixel_sample_index < self.samples_per_pixel);
        let start: usize = (self.current_pixel_sample_index * n as i64) as usize;
        let end: usize = start + n as usize;
        self.array_2d_offset += 1;
        Some(&self.sample_array_2d[self.array_2d_offset - 1][start..end])
    }
    pub fn get_2d_array_idxs(&mut self, n: i32) -> (bool, usize, usize) {
        if self.array_2d_offset == self.sample_array_2d.len() {
            return (true, 0_usize, 0_usize);
        }
        assert_eq!(self.samples_2d_array_sizes[self.array_2d_offset], n);
        assert!(self.current_pixel_sample_index < self.samples_per_pixel);
        let start: usize = (self.current_pixel_sample_index * n as i64) as usize;
        let idx: usize = self.array_2d_offset;
        self.array_2d_offset += 1;
        (false, idx, start)
    }
    pub fn start_next_sample(&mut self) -> bool {
        self.dimension = 0_i64;
        self.interval_sample_index =
            self.get_index_for_sample(self.current_pixel_sample_index as u64 + 1_u64);
        // Sampler::StartNextSample();
        // reset array offsets for next pixel sample
        self.array_1d_offset = 0_usize;
        self.array_2d_offset = 0_usize;
        self.current_pixel_sample_index += 1_i64;
        self.current_pixel_sample_index < self.samples_per_pixel
    }
    pub fn reseed(&mut self, _seed: u64) {
        // do nothing
    }
    pub fn get_current_pixel(&self) -> Point2i {
        self.current_pixel
    }
    pub fn get_current_sample_number(&self) -> i64 {
        self.current_pixel_sample_index
    }
    pub fn get_samples_per_pixel(&self) -> i64 {
        self.samples_per_pixel
    }
    // GlobalSampler
    pub fn set_sample_number(&mut self, sample_num: i64) -> bool {
        // GlobalSampler::SetSampleNumber(...)
        self.dimension = 0_i64;
        self.interval_sample_index = self.get_index_for_sample(sample_num as u64);
        // reset array offsets for next pixel sample
        self.array_1d_offset = 0_usize;
        self.array_2d_offset = 0_usize;
        self.current_pixel_sample_index = sample_num;
        self.current_pixel_sample_index < self.samples_per_pixel
    }
}