1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
// std
use std::cell::Cell;
use std::mem;
use std::sync::Arc;
// pbrt
use crate::core::geometry::{
    bnd3_union_pnt3f, nrm_abs_dot_vec3f, nrm_faceforward_nrm, pnt3_abs, pnt3_distance_squaredf,
    pnt3_permutef, vec3_coordinate_system, vec3_cross_nrm, vec3_cross_vec3, vec3_max_componentf,
    vec3_max_dimensionf, vec3_permutef,
};
use crate::core::geometry::{
    Bounds3f, Normal3f, Point2f, Point3f, Ray, Vector2f, Vector3f, XYEnum,
};
use crate::core::interaction::{Interaction, InteractionCommon, Shading, SurfaceInteraction};
use crate::core::pbrt::gamma;
use crate::core::pbrt::Float;
// use crate::core::sampling::uniform_sample_triangle;
use crate::core::texture::Texture;
use crate::core::transform::Transform;

// see triangle.h

#[derive(Clone)]
pub struct TriangleMesh {
    /// the total number of triangles in the mesh
    pub n_triangles: u32,
    /// vector of vertex indices
    pub vertex_indices: Vec<u32>,
    /// the total number of vertices in the mesh
    pub n_vertices: u32,
    /// vector of *n_vertices* vertex positions
    pub p: Vec<Point3f>,
    /// an optional vector of normal vectors (can be empty)
    pub n: Vec<Normal3f>,
    /// an optional vector of tangent vectors (can be empty)
    pub s: Vec<Vector3f>,
    /// an optional vector of paramtric (u, v) values (texture coordinates)
    pub uv: Vec<Point2f>,
    pub alpha_mask: Option<Arc<dyn Texture<Float> + Send + Sync>>,
    pub shadow_alpha_mask: Option<Arc<dyn Texture<Float> + Send + Sync>>,
    // inherited from class Shape (see shape.h)
    pub object_to_world: Transform, // TODO: not pub?
    pub world_to_object: Transform, // TODO: not pub?
    pub reverse_orientation: bool,
    pub transform_swaps_handedness: bool, // TODO: not pub?
}

impl TriangleMesh {
    pub fn new(
        object_to_world: Transform,
        world_to_object: Transform,
        reverse_orientation: bool,
        n_triangles: u32,
        vertex_indices: Vec<u32>,
        n_vertices: u32,
        p: Vec<Point3f>,
        s: Vec<Vector3f>,
        n: Vec<Normal3f>,
        uv: Vec<Point2f>,
        alpha_mask: Option<Arc<dyn Texture<Float> + Send + Sync>>,
        shadow_alpha_mask: Option<Arc<dyn Texture<Float> + Send + Sync>>,
    ) -> Self {
        TriangleMesh {
            // Shape
            object_to_world,
            world_to_object,
            reverse_orientation,
            transform_swaps_handedness: object_to_world.swaps_handedness(),
            // TriangleMesh
            n_triangles,
            vertex_indices,
            n_vertices,
            p,
            n,
            s,
            uv,
            alpha_mask,
            shadow_alpha_mask,
        }
    }
}

#[derive(Clone)]
pub struct Triangle {
    mesh: Arc<TriangleMesh>,
    pub id: u32,
}

impl Triangle {
    pub fn new(mesh: Arc<TriangleMesh>, tri_number: u32) -> Self {
        Triangle {
            mesh,
            id: tri_number,
        }
    }
    pub fn get_uvs(&self) -> [Point2f; 3] {
        if self.mesh.uv.is_empty() {
            [
                Point2f { x: 0.0, y: 0.0 },
                Point2f { x: 1.0, y: 0.0 },
                Point2f { x: 1.0, y: 1.0 },
            ]
        } else {
            [
                self.mesh.uv[self.mesh.vertex_indices[(self.id * 3) as usize] as usize],
                self.mesh.uv[self.mesh.vertex_indices[(self.id * 3) as usize + 1] as usize],
                self.mesh.uv[self.mesh.vertex_indices[(self.id * 3) as usize + 2] as usize],
            ]
        }
    }
    // Shape
    pub fn object_bound(&self) -> Bounds3f {
        let idx1: usize = (self.id * 3) as usize;
        let idx = &self.mesh.vertex_indices[idx1..(idx1 + 3)];
        let p0: &Point3f = &self.mesh.p[idx[0] as usize];
        let p1: &Point3f = &self.mesh.p[idx[1] as usize];
        let p2: &Point3f = &self.mesh.p[idx[2] as usize];
        bnd3_union_pnt3f(
            &Bounds3f::new(
                self.mesh.world_to_object.transform_point(p0),
                self.mesh.world_to_object.transform_point(p1),
            ),
            &self.mesh.world_to_object.transform_point(p2),
        )
    }
    pub fn world_bound(&self) -> Bounds3f {
        let idx1: usize = (self.id * 3) as usize;
        let idx = &self.mesh.vertex_indices[idx1..(idx1 + 3)];
        let p0: &Point3f = &self.mesh.p[idx[0] as usize];
        let p1: &Point3f = &self.mesh.p[idx[1] as usize];
        let p2: &Point3f = &self.mesh.p[idx[2] as usize];
        bnd3_union_pnt3f(&Bounds3f::new(*p0, *p1), p2)
    }
    pub fn intersect(&self, ray: &Ray, t_hit: &mut Float, isect: &mut SurfaceInteraction) -> bool {
        // get triangle vertices in _p0_, _p1_, and _p2_
        let idx1: usize = (self.id * 3) as usize;
        let idx = &self.mesh.vertex_indices[idx1..(idx1 + 3)];
        let p0: &Point3f = &self.mesh.p[idx[0] as usize];
        let p1: &Point3f = &self.mesh.p[idx[1] as usize];
        let p2: &Point3f = &self.mesh.p[idx[2] as usize];
        // translate vertices based on ray origin
        let mut p0t: Point3f = *p0
            - Vector3f {
                x: ray.o.x,
                y: ray.o.y,
                z: ray.o.z,
            };
        let mut p1t: Point3f = *p1
            - Vector3f {
                x: ray.o.x,
                y: ray.o.y,
                z: ray.o.z,
            };
        let mut p2t: Point3f = *p2
            - Vector3f {
                x: ray.o.x,
                y: ray.o.y,
                z: ray.o.z,
            };
        // permute components of triangle vertices and ray direction
        let kz: usize = vec3_max_dimensionf(&ray.d.abs());
        let mut kx: usize = kz + 1;
        if kx == 3 {
            kx = 0;
        }
        let mut ky: usize = kx + 1;
        if ky == 3 {
            ky = 0;
        }
        let d: Vector3f = vec3_permutef(&ray.d, kx, ky, kz);
        p0t = pnt3_permutef(&p0t, kx, ky, kz);
        p1t = pnt3_permutef(&p1t, kx, ky, kz);
        p2t = pnt3_permutef(&p2t, kx, ky, kz);
        // apply shear transformation to translated vertex positions
        let sx: Float = -d.x / d.z;
        let sy: Float = -d.y / d.z;
        let sz: Float = 1.0 / d.z;
        p0t.x += sx * p0t.z;
        p0t.y += sy * p0t.z;
        p1t.x += sx * p1t.z;
        p1t.y += sy * p1t.z;
        p2t.x += sx * p2t.z;
        p2t.y += sy * p2t.z;
        // compute edge function coefficients _e0_, _e1_, and _e2_
        let mut e0: Float = p1t.x * p2t.y - p1t.y * p2t.x;
        let mut e1: Float = p2t.x * p0t.y - p2t.y * p0t.x;
        let mut e2: Float = p0t.x * p1t.y - p0t.y * p1t.x;
        // fall back to double precision test at triangle edges
        if mem::size_of::<Float>() == mem::size_of::<f32>() && (e0 == 0.0 || e1 == 0.0 || e2 == 0.0)
        {
            let p2txp1ty: f64 = p2t.x as f64 * p1t.y as f64;
            let p2typ1tx: f64 = p2t.y as f64 * p1t.x as f64;
            e0 = (p2typ1tx - p2txp1ty) as Float;
            let p0txp2ty = p0t.x as f64 * p2t.y as f64;
            let p0typ2tx = p0t.y as f64 * p2t.x as f64;
            e1 = (p0typ2tx - p0txp2ty) as Float;
            let p1txp0ty = p1t.x as f64 * p0t.y as f64;
            let p1typ0tx = p1t.y as f64 * p0t.x as f64;
            e2 = (p1typ0tx - p1txp0ty) as Float;
        }
        // perform triangle edge and determinant tests
        if (e0 < 0.0 || e1 < 0.0 || e2 < 0.0) && (e0 > 0.0 || e1 > 0.0 || e2 > 0.0) {
            return false;
        }
        let det: Float = e0 + e1 + e2;
        if det == 0.0 {
            return false;
        }
        // compute scaled hit distance to triangle and test against ray $t$ range
        p0t.z *= sz;
        p1t.z *= sz;
        p2t.z *= sz;
        let t_scaled: Float = e0 * p0t.z + e1 * p1t.z + e2 * p2t.z;
        if det < 0.0 && (t_scaled >= 0.0 || t_scaled < ray.t_max.get() * det) {
            return false;
        } else if det > 0.0 && (t_scaled <= 0.0 || t_scaled > ray.t_max.get() * det) {
            return false;
        }
        // compute barycentric coordinates and $t$ value for triangle intersection
        let inv_det: Float = 1.0 / det;
        let b0: Float = e0 * inv_det;
        let b1: Float = e1 * inv_det;
        let b2: Float = e2 * inv_det;
        let t: Float = t_scaled * inv_det;

        // ensure that computed triangle $t$ is conservatively greater than zero

        // compute $\delta_z$ term for triangle $t$ error bounds
        let max_zt: Float = vec3_max_componentf(
            &Vector3f {
                x: p0t.z,
                y: p1t.z,
                z: p2t.z,
            }
            .abs(),
        );
        let delta_z: Float = gamma(3_i32) * max_zt;
        // compute $\delta_x$ and $\delta_y$ terms for triangle $t$ error bounds
        let max_xt: Float = vec3_max_componentf(
            &Vector3f {
                x: p0t.x,
                y: p1t.x,
                z: p2t.x,
            }
            .abs(),
        );
        let max_yt: Float = vec3_max_componentf(
            &Vector3f {
                x: p0t.y,
                y: p1t.y,
                z: p2t.y,
            }
            .abs(),
        );
        let delta_x: Float = gamma(5) * (max_xt + max_zt);
        let delta_y: Float = gamma(5) * (max_yt + max_zt);
        // compute $\delta_e$ term for triangle $t$ error bounds
        let delta_e: Float =
            2.0 * (gamma(2) * max_xt * max_yt + delta_y * max_xt + delta_x * max_yt);
        // compute $\delta_t$ term for triangle $t$ error bounds and check _t_
        let max_e: Float = vec3_max_componentf(
            &Vector3f {
                x: e0,
                y: e1,
                z: e2,
            }
            .abs(),
        );
        let delta_t: Float =
            3.0 * (gamma(3) * max_e * max_zt + delta_e * max_zt + delta_z * max_e) * inv_det.abs();
        if t <= delta_t {
            return false;
        }
        // compute triangle partial derivatives
        let uv: [Point2f; 3] = self.get_uvs();
        // compute deltas for triangle partial derivatives
        let duv02: Vector2f = uv[0] - uv[2];
        let duv12: Vector2f = uv[1] - uv[2];
        let dp02: Vector3f = *p0 - *p2;
        let dp12: Vector3f = *p1 - *p2;
        let determinant: Float = duv02.x * duv12.y - duv02.y * duv12.x;
        let degenerate_uv: bool = determinant.abs() < 1e-8 as Float;
        let mut dpdu: Vector3f = Vector3f::default();
        let mut dpdv: Vector3f = if !degenerate_uv {
            let invdet: Float = 1.0 / determinant;
            dpdu = (dp02 * duv12.y - dp12 * duv02.y) * invdet;
            (dp02 * -duv12.x + dp12 * duv02.x) * invdet
        } else {
            Vector3f::default()
        };
        if degenerate_uv || vec3_cross_vec3(&dpdu, &dpdv).length_squared() == 0.0 {
            // handle zero determinant for triangle partial derivative matrix
            vec3_coordinate_system(
                &vec3_cross_vec3(&(*p2 - *p0), &(*p1 - *p0)).normalize(),
                &mut dpdu,
                &mut dpdv,
            );
        }
        // compute error bounds for triangle intersection
        let x_abs_sum: Float = (b0 * p0.x).abs() + (b1 * p1.x).abs() + (b2 * p2.x).abs();
        let y_abs_sum: Float = (b0 * p0.y).abs() + (b1 * p1.y).abs() + (b2 * p2.y).abs();
        let z_abs_sum: Float = (b0 * p0.z).abs() + (b1 * p1.z).abs() + (b2 * p2.z).abs();
        let p_error: Vector3f = Vector3f {
            x: x_abs_sum,
            y: y_abs_sum,
            z: z_abs_sum,
        } * gamma(7);
        // interpolate $(u,v)$ parametric coordinates and hit point
        let p_hit: Point3f = *p0 * b0 + *p1 * b1 + *p2 * b2;
        let uv_hit: Point2f = uv[0] * b0 + uv[1] * b1 + uv[2] * b2;
        // test intersection against alpha texture, if present
        // TODO: testAlphaTexture
        if let Some(alpha_mask) = &self.mesh.alpha_mask {
            let wo: Vector3f = -ray.d;
            let isect_local: SurfaceInteraction = SurfaceInteraction::new(
                &p_hit,
                &Vector3f::default(),
                uv_hit,
                &wo,
                &dpdu,
                &dpdv,
                &Normal3f::default(),
                &Normal3f::default(),
                ray.time,
                None,
            );
            if alpha_mask.evaluate(&isect_local) == 0.0 as Float {
                return false;
            }
        }
        // fill in _SurfaceInteraction_ from triangle hit
        let dndu: Normal3f = Normal3f::default();
        let dndv: Normal3f = Normal3f::default();
        let wo: Vector3f = -ray.d;
        // override surface normal in _isect_ for triangle
        let mut surface_normal: Normal3f =
            Normal3f::from(vec3_cross_vec3(&dp02, &dp12).normalize());
        if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
            surface_normal = -surface_normal;
        }
        let mut shading: Shading = Shading {
            n: surface_normal,
            dpdu,
            dpdv,
            dndu,
            dndv,
        };
        if !self.mesh.n.is_empty() || !self.mesh.s.is_empty() {
            // initialize _Triangle_ shading geometry

            // compute shading normal _ns_ for triangle
            let mut ns: Normal3f;
            if !self.mesh.n.is_empty() {
                let n0 = self.mesh.n[self.mesh.vertex_indices[(self.id * 3) as usize] as usize];
                let n1 = self.mesh.n[self.mesh.vertex_indices[(self.id * 3) as usize + 1] as usize];
                let n2 = self.mesh.n[self.mesh.vertex_indices[(self.id * 3) as usize + 2] as usize];
                ns = n0 * b0 + n1 * b1 + n2 * b2;
                if ns.length_squared() > 0.0 {
                    ns = ns.normalize();
                } else {
                    ns = surface_normal;
                }
            } else {
                ns = surface_normal;
            }
            // compute shading tangent _ss_ for triangle
            let mut ss: Vector3f;
            if !self.mesh.s.is_empty() {
                let s0 = self.mesh.s[self.mesh.vertex_indices[(self.id * 3) as usize] as usize];
                let s1 = self.mesh.s[self.mesh.vertex_indices[(self.id * 3) as usize + 1] as usize];
                let s2 = self.mesh.s[self.mesh.vertex_indices[(self.id * 3) as usize + 2] as usize];
                ss = s0 * b0 + s1 * b1 + s2 * b2;
                if ss.length_squared() > 0.0 {
                    ss = ss.normalize();
                } else {
                    ss = dpdu.normalize();
                }
            } else {
                ss = dpdu.normalize();
            }
            // compute shading bitangent _ts_ for triangle and adjust _ss_
            let mut ts: Vector3f = vec3_cross_nrm(&ss, &ns);
            if ts.length_squared() > 0.0 {
                ts = ts.normalize();
                ss = vec3_cross_nrm(&ts, &ns);
            } else {
                vec3_coordinate_system(&Vector3f::from(ns), &mut ss, &mut ts);
            }
            // compute $\dndu$ and $\dndv$ for triangle shading geometry
            let dndu: Normal3f;
            let dndv: Normal3f;
            if !self.mesh.n.is_empty() {
                // compute deltas for triangle partial derivatives of normal
                let duv02: Vector2f = uv[0] - uv[2];
                let duv12: Vector2f = uv[1] - uv[2];
                let dn1: Normal3f = self.mesh.n
                    [self.mesh.vertex_indices[(self.id * 3) as usize] as usize]
                    - self.mesh.n[self.mesh.vertex_indices[(self.id * 3) as usize + 2] as usize];
                let dn2: Normal3f = self.mesh.n
                    [self.mesh.vertex_indices[(self.id * 3) as usize + 1] as usize]
                    - self.mesh.n[self.mesh.vertex_indices[(self.id * 3) as usize + 2] as usize];
                let determinant: Float = duv02.x * duv12.y - duv02.y * duv12.x;
                let degenerate_uv: bool = determinant.abs() < 1e-8;
                if degenerate_uv {
                    dndu = Normal3f::default();
                    dndv = Normal3f::default();
                } else {
                    let inv_det: Float = 1.0 / determinant;
                    dndu = (dn1 * duv12.y - dn2 * duv02.y) * inv_det;
                    dndv = (dn1 * -duv12.x + dn2 * duv02.x) * inv_det;
                }
            } else {
                dndu = Normal3f::default();
                dndv = Normal3f::default();
            }
            shading.n = Normal3f::from(vec3_cross_vec3(&ss, &ts)).normalize();
            surface_normal = nrm_faceforward_nrm(&surface_normal, &shading.n);
            shading.dpdu = ss;
            shading.dpdv = ts;
            shading.dndu = dndu;
            shading.dndv = dndv;
        }
        {
            isect.common.p = p_hit;
            isect.common.time = ray.time;
            isect.common.p_error = p_error;
            isect.common.wo = wo;
            isect.common.n = surface_normal;
            isect.common.medium_interface = None;
        }
        isect.uv = uv_hit;
        isect.dpdu = dpdu;
        isect.dpdv = dpdv;
        isect.dndu = dndu;
        isect.dndv = dndv;
        isect.dpdx = Cell::new(Vector3f::default());
        isect.dpdy = Cell::new(Vector3f::default());
        isect.dudx = Cell::new(0.0 as Float);
        isect.dvdx = Cell::new(0.0 as Float);
        isect.dudy = Cell::new(0.0 as Float);
        isect.dvdy = Cell::new(0.0 as Float);
        isect.primitive = None;
        isect.shading = shading;
        isect.bsdf = None;
        // isect.bssrdf = None;
        isect.shape = None;
        *t_hit = t;
        true
    }
    pub fn intersect_p(&self, ray: &Ray) -> bool {
        // TODO: ProfilePhase p(Prof::TriIntersectP);
        // TODO: ++nTests;
        // get triangle vertices in _p0_, _p1_, and _p2_
        let idx1: usize = (self.id * 3) as usize;
        let idx = &self.mesh.vertex_indices[idx1..(idx1 + 3)];
        let p0: &Point3f = &self.mesh.p[idx[0] as usize];
        let p1: &Point3f = &self.mesh.p[idx[1] as usize];
        let p2: &Point3f = &self.mesh.p[idx[2] as usize];
        // translate vertices based on ray origin
        let mut p0t: Point3f = *p0
            - Vector3f {
                x: ray.o.x,
                y: ray.o.y,
                z: ray.o.z,
            };
        let mut p1t: Point3f = *p1
            - Vector3f {
                x: ray.o.x,
                y: ray.o.y,
                z: ray.o.z,
            };
        let mut p2t: Point3f = *p2
            - Vector3f {
                x: ray.o.x,
                y: ray.o.y,
                z: ray.o.z,
            };
        // permute components of triangle vertices and ray direction
        let kz: usize = vec3_max_dimensionf(&ray.d.abs());
        let mut kx: usize = kz + 1;
        if kx == 3 {
            kx = 0;
        }
        let mut ky: usize = kx + 1;
        if ky == 3 {
            ky = 0;
        }
        let d: Vector3f = vec3_permutef(&ray.d, kx, ky, kz);
        p0t = pnt3_permutef(&p0t, kx, ky, kz);
        p1t = pnt3_permutef(&p1t, kx, ky, kz);
        p2t = pnt3_permutef(&p2t, kx, ky, kz);
        // apply shear transformation to translated vertex positions
        let sx: Float = -d.x / d.z;
        let sy: Float = -d.y / d.z;
        let sz: Float = 1.0 / d.z;
        p0t.x += sx * p0t.z;
        p0t.y += sy * p0t.z;
        p1t.x += sx * p1t.z;
        p1t.y += sy * p1t.z;
        p2t.x += sx * p2t.z;
        p2t.y += sy * p2t.z;
        // compute edge function coefficients _e0_, _e1_, and _e2_
        let mut e0: Float = p1t.x * p2t.y - p1t.y * p2t.x;
        let mut e1: Float = p2t.x * p0t.y - p2t.y * p0t.x;
        let mut e2: Float = p0t.x * p1t.y - p0t.y * p1t.x;
        // fall back to double precision test at triangle edges
        if mem::size_of::<Float>() == mem::size_of::<f32>() && (e0 == 0.0 || e1 == 0.0 || e2 == 0.0)
        {
            let p2txp1ty: f64 = p2t.x as f64 * p1t.y as f64;
            let p2typ1tx: f64 = p2t.y as f64 * p1t.x as f64;
            e0 = (p2typ1tx - p2txp1ty) as Float;
            let p0txp2ty = p0t.x as f64 * p2t.y as f64;
            let p0typ2tx = p0t.y as f64 * p2t.x as f64;
            e1 = (p0typ2tx - p0txp2ty) as Float;
            let p1txp0ty = p1t.x as f64 * p0t.y as f64;
            let p1typ0tx = p1t.y as f64 * p0t.x as f64;
            e2 = (p1typ0tx - p1txp0ty) as Float;
        }
        // perform triangle edge and determinant tests
        if (e0 < 0.0 || e1 < 0.0 || e2 < 0.0) && (e0 > 0.0 || e1 > 0.0 || e2 > 0.0) {
            return false;
        }
        let det: Float = e0 + e1 + e2;
        if det == 0.0 {
            return false;
        }
        // compute scaled hit distance to triangle and test against ray $t$ range
        p0t.z *= sz;
        p1t.z *= sz;
        p2t.z *= sz;
        let t_scaled: Float = e0 * p0t.z + e1 * p1t.z + e2 * p2t.z;
        if det < 0.0 && (t_scaled >= 0.0 || t_scaled < ray.t_max.get() * det) {
            return false;
        } else if det > 0.0 && (t_scaled <= 0.0 || t_scaled > ray.t_max.get() * det) {
            return false;
        }
        // compute barycentric coordinates and $t$ value for triangle intersection
        let inv_det: Float = 1.0 / det;
        let b0: Float = e0 * inv_det;
        let b1: Float = e1 * inv_det;
        let b2: Float = e2 * inv_det;
        let t: Float = t_scaled * inv_det;

        // ensure that computed triangle $t$ is conservatively greater than zero

        // compute $\delta_z$ term for triangle $t$ error bounds
        let max_zt: Float = vec3_max_componentf(
            &Vector3f {
                x: p0t.z,
                y: p1t.z,
                z: p2t.z,
            }
            .abs(),
        );
        let delta_z: Float = gamma(3_i32) * max_zt;
        // compute $\delta_x$ and $\delta_y$ terms for triangle $t$ error bounds
        let max_xt: Float = vec3_max_componentf(
            &Vector3f {
                x: p0t.x,
                y: p1t.x,
                z: p2t.x,
            }
            .abs(),
        );
        let max_yt: Float = vec3_max_componentf(
            &Vector3f {
                x: p0t.y,
                y: p1t.y,
                z: p2t.y,
            }
            .abs(),
        );
        let delta_x: Float = gamma(5) * (max_xt + max_zt);
        let delta_y: Float = gamma(5) * (max_yt + max_zt);
        // compute $\delta_e$ term for triangle $t$ error bounds
        let delta_e: Float =
            2.0 * (gamma(2) * max_xt * max_yt + delta_y * max_xt + delta_x * max_yt);
        // compute $\delta_t$ term for triangle $t$ error bounds and check _t_
        let max_e: Float = vec3_max_componentf(
            &Vector3f {
                x: e0,
                y: e1,
                z: e2,
            }
            .abs(),
        );
        let delta_t: Float =
            3.0 * (gamma(3) * max_e * max_zt + delta_e * max_zt + delta_z * max_e) * inv_det.abs();
        if t <= delta_t {
            return false;
        }
        // TODO: if (testAlphaTexture && (mesh->alphaMask || mesh->shadowAlphaMask)) { ... }
        if self.mesh.alpha_mask.is_some() || self.mesh.shadow_alpha_mask.is_some() {
            // compute triangle partial derivatives
            let mut dpdu: Vector3f = Vector3f::default();
            let mut dpdv: Vector3f = Vector3f::default();
            let uv: [Point2f; 3] = self.get_uvs();
            // compute deltas for triangle partial derivatives
            let duv02: Vector2f = uv[0] - uv[2];
            let duv12: Vector2f = uv[1] - uv[2];
            let dp02: Vector3f = *p0 - *p2;
            let dp12: Vector3f = *p1 - *p2;
            let duv02x = duv02[XYEnum::X];
            let duv02y = duv02[XYEnum::Y];
            let duv12x = duv12[XYEnum::X];
            let duv12y = duv12[XYEnum::Y];
            let determinant: Float = duv02x * duv12y - duv02y * duv12x;
            let degenerate_uv: bool = determinant.abs() < 1e-8 as Float;
            if !degenerate_uv {
                let invdet: Float = 1.0 as Float / determinant;
                dpdu = (dp02 * duv12y - dp12 * duv02y) * invdet;
                dpdv = (dp02 * -duv12x + dp12 * duv02x) * invdet;
            }
            if degenerate_uv || vec3_cross_vec3(&dpdu, &dpdv).length_squared() == 0.0 {
                // handle zero determinant for triangle partial derivative matrix
                let ng = vec3_cross_vec3(&(*p2 - *p0), &(*p1 - *p0));
                if ng.length_squared() == 0.0 as Float {
                    // the triangle is actually degenerate; the
                    // intersection is bogus
                    return false;
                }
                vec3_coordinate_system(
                    &vec3_cross_vec3(&(*p2 - *p0), &(*p1 - *p0)).normalize(),
                    &mut dpdu,
                    &mut dpdv,
                );
            }
            // interpolate $(u,v)$ parametric coordinates and hit point
            let p_hit: Point3f = *p0 * b0 + *p1 * b1 + *p2 * b2;
            let uv_hit: Point2f = uv[0] * b0 + uv[1] * b1 + uv[2] * b2;
            let wo: Vector3f = -ray.d;
            let isect_local: SurfaceInteraction = SurfaceInteraction::new(
                &p_hit,
                &Vector3f::default(),
                uv_hit,
                &wo,
                &dpdu,
                &dpdv,
                &Normal3f::default(),
                &Normal3f::default(),
                ray.time,
                None,
            );
            if let Some(alpha_mask) = &self.mesh.alpha_mask {
                if alpha_mask.evaluate(&isect_local) == 0.0 as Float {
                    return false;
                }
            }
            if let Some(shadow_alpha_mask) = &self.mesh.shadow_alpha_mask {
                if shadow_alpha_mask.evaluate(&isect_local) == 0.0 as Float {
                    return false;
                }
            }
        }
        // TODO: ++nHits;
        true
    }
    pub fn get_reverse_orientation(&self) -> bool {
        self.mesh.reverse_orientation
    }
    pub fn get_transform_swaps_handedness(&self) -> bool {
        self.mesh.transform_swaps_handedness
    }
    pub fn get_object_to_world(&self) -> Transform {
        self.mesh.object_to_world
    }
    pub fn area(&self) -> Float {
        let idx1: usize = (self.id * 3) as usize;
        let idx = &self.mesh.vertex_indices[idx1..(idx1 + 3)];
        // get triangle vertices in _p0_, _p1_, and _p2_
        let p0: &Point3f = &self.mesh.p[idx[0] as usize];
        let p1: &Point3f = &self.mesh.p[idx[1] as usize];
        let p2: &Point3f = &self.mesh.p[idx[2] as usize];
        0.5 as Float * vec3_cross_vec3(&(*p1 - *p0), &(*p2 - *p0)).length()
    }
    pub fn sample(&self, u: Point2f, pdf: &mut Float) -> InteractionCommon {
        let idx1: usize = (self.id * 3) as usize;
        let idx = &self.mesh.vertex_indices[idx1..(idx1 + 3)];
        // avoid calling uniform_sample_triangle!!!
        // let b: Point2f = uniform_sample_triangle(u);
        let su0: Float = u[XYEnum::X].sqrt();
        let bx: Float = 1.0 as Float - su0;
        let by: Float = u[XYEnum::Y] * su0;
        // get triangle vertices in _p0_, _p1_, and _p2_
        let p0: &Point3f = &self.mesh.p[idx[0] as usize];
        let p1: &Point3f = &self.mesh.p[idx[1] as usize];
        let p2: &Point3f = &self.mesh.p[idx[2] as usize];
        // let bx = b[XYEnum::X];
        // let by = b[XYEnum::Y];
        let it_p = p0 * bx + p1 * by + p2 * (1.0 as Float - bx - by);
        // compute surface normal for sampled point on triangle
        let mut it_n = Normal3f::from(vec3_cross_vec3(&(p1 - p0), &(p2 - p0))).normalize();
        // ensure correct orientation of the geometric normal; follow
        // the same approach as was used in Triangle::Intersect().
        if !self.mesh.n.is_empty() {
            let ns: Normal3f = self.mesh.n[idx[0] as usize] * bx
                + self.mesh.n[idx[1] as usize] * by
                + self.mesh.n[idx[2] as usize] * (1.0 as Float - bx - by);
            it_n = nrm_faceforward_nrm(&it_n, &ns);
        } else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
            it_n *= -1.0 as Float;
        }
        // compute error bounds for sampled point on triangle
        let p_abs_sum: Point3f = pnt3_abs(&(p0 * bx))
            + pnt3_abs(&(p1 * by))
            + pnt3_abs(&(p2 * (1.0 as Float - bx - by)));
        let it_p_error = Vector3f {
            x: p_abs_sum.x,
            y: p_abs_sum.y,
            z: p_abs_sum.z,
        } * gamma(6);
        // avoid calling self.area()!!! *pdf = 1.0 as Float / self.area();
        let area: Float = 0.5 as Float * vec3_cross_vec3(&(p1 - p0), &(p2 - p0)).length();
        *pdf = 1.0 as Float / area;
        InteractionCommon {
            p: it_p,
            time: 0.0 as Float,
            p_error: it_p_error,
            wo: Vector3f::default(),
            n: it_n,
            medium_interface: None,
        }
    }
    pub fn sample_with_ref_point(
        &self,
        iref: &InteractionCommon,
        u: Point2f,
        pdf: &mut Float,
    ) -> InteractionCommon {
        let intr: InteractionCommon = self.sample(u, pdf);
        let mut wi: Vector3f = intr.p - iref.p;
        if wi.length_squared() == 0.0 as Float {
            *pdf = 0.0 as Float;
        } else {
            wi = wi.normalize();
            // convert from area measure, as returned by the Sample()
            // call above, to solid angle measure.
            *pdf *= pnt3_distance_squaredf(&iref.p, &intr.p) / nrm_abs_dot_vec3f(&intr.n, &-wi);
            if (*pdf).is_infinite() {
                *pdf = 0.0 as Float;
            }
        }
        intr
    }
    pub fn pdf_with_ref_point(&self, iref: &dyn Interaction, wi: &Vector3f) -> Float {
        // intersect sample ray with area light geometry
        let ray: Ray = iref.spawn_ray(wi);
        // ignore any alpha textures used for trimming the shape when
        // performing this intersection. Hack for the "San Miguel"
        // scene, where this is used to make an invisible area light.
        let mut t_hit: Float = 0.0;
        let mut isect_light: SurfaceInteraction = SurfaceInteraction::default();
        if self.intersect(&ray, &mut t_hit, &mut isect_light) {
            // convert light sample weight to solid angle measure
            let mut pdf: Float = pnt3_distance_squaredf(&iref.get_p(), &isect_light.common.p)
                / (nrm_abs_dot_vec3f(&isect_light.common.n, &-(*wi)) * self.area());
            if pdf.is_infinite() {
                pdf = 0.0 as Float;
            }
            pdf
        } else {
            0.0 as Float
        }
    }
}